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Abstract

The scarcity and high cost of labeled high-resolution imagery
have long challenged remote sensing applications, particu-
larly in low-income regions where high-resolution data are
scarce. In this study, we propose a weak supervision frame-
work that estimates parking lot occupancy using 3m reso-
lution satellite imagery. By leveraging coarse temporal la-
bels—based on the assumption that parking lots of major su-
permarkets and hardware stores in Germany are typically full
on Saturdays and empty on Sundays — we train a pairwise
comparison model that achieves an AUC of 0.92 on large
parking lots. The proposed approach minimizes the reliance
on expensive high-resolution images and holds promise for
scalable urban mobility analysis. Moreover, the method can
be adapted to assess transit patterns and resource allocation
in vulnerable communities, providing a data-driven basis to
improve the well-being of those most in need.

Introduction
Unlike image classification tasks in natural images, where
extensive labeled datasets such as ImageNet (Deng et al.
2009) and MS COCO (Lin et al. 2014) are readily avail-
able, remote sensing applications suffer from a lack of large-
scale labeled data. This shortage hinders the development
of broadly applicable representations for tasks like univer-
sal parking lot estimation across the globe. The scarcity
of labels is largely due to the prohibitively expensive and
labor-intensive nature of manual annotation (Christie et al.
2018; Uzkent et al. 2019; Berg, Pham, and Courty 2022;
Yue et al. 2022; Rufener et al. 2024). Moreover, a simple
survey of image availability reveals that high-resolution cap-
tures are far more common for high-income countries than
for low-income ones. For example, using UP42’s API con-
sole1, we obtained 27 images for Berlin, Germany and only
15 for Accra, Ghana, under similar conditions (cloud cover
below 20% and 30cm resolution) between 2020-01-01 and
2022-12-31. This observation supports the point made by
Engstrom, Hersh, and Newhouse (2022) that high-resolution
satellites tend to underrepresent low-income countries.

Parking-lot occupancy serves as a scalable, proxy for hu-
man presence and movement patterns in urban environments
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(Rufener et al. 2024). Since the vast majority of daily trips
involve personal vehicles, fluctuations in parking lot usage
directly reflect commuting flows, and commercial activity.
By predicting occupancy dynamics of parking lots, we can
estimate human mobility trends on a global scale.

Given these challenges in obtaining high-quality labels
and high-resolution imagery for low-income countries, al-
ternative methods that require less precise annotations and
low-resolution imagery are essential towards the estimation
of generalizable parking lot occupancy. Weak supervision
learning is one such approach. In this framework, models
learn from labels that are inexact (providing only coarse in-
formation), incomplete (available for only a subset of the
data), or inaccurate (noisy annotations) (Zhou 2018; Yue
et al. 2022; Ratner et al. 2017; Uzkent et al. 2019). Despite
their lack of precision, these weak labels can still serve as
valuable signals for model training.

Our work explores weak supervision learning for de-
termining occupied vs empty parking lots using 3m Plan-
etScope imagery provided by Planet 2 of parking lots in Ger-
many. We aim to contribute to growing research of learning
from noisy annotations in domains where ground-truth la-
bels are scarce and expensive to obtain.

Related Works
Weak Supervision. According to Yue et al. (2022), a model
is said to be weakly supervised if any of the following condi-
tions hold: (1) there are few labeled instances among many
training samples, (2) annotation is provided on a coarse
level, or (3) training samples have labels that are only par-
tially correct or noisy. The first condition (1), often re-
ferred to as Incomplete Supervision, involves learning from a
dataset where only a small subset of instances is labeled (He
et al. 2021). In this case, the challenge lies in generalizing
from the limited labeled data to the much larger unlabeled
portion. This typically involves active learning (Zheng et al.
2021), where human experts are used to annotate the unla-
beled data points or semi-supervised learning (Li, Guo, and
Zhou 2019; Zheng et al. 2021), where the model learns from
both labeled and unlabeled data points.

The second condition (2), Inexact Supervision occurs
when only coarse labels are available, and the task is to in-
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fer finer-grained structures. In remote sensing applications,
this often requires interpolation or multi-instance learning
techniques to derive detailed insights from coarse data, e.g.
identifying individual tree species in a forest from vegeta-
tion cover maps (Carbonneau et al. 2018; Wang et al. 2022;
Li et al. 2023).

The third condition (3), also known as Inaccurate Super-
vision, is a learning paradigm where the annotation of labels
may not always reflect the ground-truth (Zheng et al. 2021),
thus the labels are not accurate or noisy. Noise in the labels
can arise from incorrect annotations or flawed assumptions
used to generate the labels. This type of supervision poses
a unique challenge as models must learn to distinguish be-
tween genuine patterns in the data and noise in the labels
(Li, Zhang, and Zhu 2019).

Parking Lot Occupancy Estimation. Unlike other satel-
lite imagery providers, PlanetScope provides near-daily im-
ages, pending cloud-free skies. This high temporal resolu-
tion makes this data a potential fit to estimate parking lot
occupancy. Using PlanetScope imagery of a parking lot cap-
tured on different days, Drouyer (2020) estimated the occu-
pancy ratio, that is, the proportion of occupied spaces for
a large commercial parking lot in the US. The model takes
as input a series of images of a parking lot and returns the
occupancy ratio. To achieve this, Drouyer uses three pixel-
level features derived from PlanetScope imagery: bright-
ness, gradient, and Pearson correlation with surrounding
pixels. These features show strong correlations with ground-
truth data captured by a webcam positioned next to the park-
ing lot, with the median image calculated from a series of
images when the lot was empty. In their work on estimating
occupancy ratios, Zhao et al. (2022) use a high-resolution
image (30 cm) for spatial guidance, as cars are easier to iden-
tify at that scale. They also use three PlanetScope images: a
main image, a second image captured closest in time to the
main image, and a third image taken no more than seven
weeks apart from the main image.

The pair of images that accompany the main image is
used to capture the temporal changes in the images. The
use of both high resolution and pair of before/after images
yielded a high occupancy correlation to the ground-truth
data. The proposed approach achieved a low mean abso-
lute error in vehicle counting, outperforming the baseline
models. However, it still requires high-resolution imagery
for spatial guidance, which may not be available for retro-
spective analyses or be expensive to obtain. Another work
done in this area is the use of high-resolution SkySat images
provided by Planet to label corresponding PlanetScope im-
ages as a regression-based task to classify vehicles on the
road and further estimate the heading direction of vehicles
(Van Etten 2024).

Our Approach
Existing methods for parking lot occupancy estimation often
rely on high-resolution imagery, additional temporal data,
which may not always be available or cost-effective or the
approach does not generalize well to other parking lots. In
contrast, our approach utilizes weak supervision learning,
leveraging noisy labels derived from temporal patterns in

parking lot usage. This weak supervision arises from the in-
herent inaccuracy in our labeling assumption—specifically,
we assume that parking lots of supermarkets and hardware
stores in Germany are typically full on Saturdays and empty
on Sundays, as most stores remain closed by national law
on Sundays. This policy effect guides our methodology, al-
lowing us to estimate occupancy without requiring exten-
sive labeled data or high-resolution images. While this law
and its effects apply widely, there are notable exceptions.
For instance, in some communities, these parking lots may
host events such as second-hand product sales also known as
”flea markets” on Sundays on such parking lots. Similarly,
shops may open on special Sundays, known as ”verkaufsof-
fene Sonntag” to compensate for extended holiday closures.
Another thing to note is that even though parking lots are
expected to be full(er) on Saturdays, due to the popularity
of the place, weather condition, and season actual busyness
may vary. In addition to the inaccuracies in our labels, an ob-
server can barely differentiate between subtle features such
as individual cars and other structures such as shopping cart
stands, garbage containers or other variations in parking lot
usage from 3m PlanetScope imagery. Despite these chal-
lenges, our goal is to extract general patterns of presence
or absence of cars from the data by leveraging the weak an-
notations described above. Once trained we expect to apply
our model ’as-is’ to new regions without fine-tuning or re-
training.

Given a pair of images captured on a Saturday and a
Sunday for a large parking lot (≥ 10, 000 sqm), it is rel-
atively easy for a human observer to determine which im-
age corresponds to an occupied parking lot and which repre-
sents an empty one. For instance, the upper row of Figure 1
presents a typical example of such an image pair for a park-
ing lot with a total area of 36, 866 sqm. In this case, the im-
age on the left appears more colorful and generally darker
in the middle, which can be attributed to the presence of
(parked) cars. In contrast, the image on the right exhibits a
more homogeneous appearance, indicating an empty park-
ing lot. However, this visual distinction becomes increas-
ingly challenging for smaller parking lots (≤ 5, 000 sqm),
where larger patterns as in large parking lot become less vis-
ible. As shown in bottom row of Figure 1, for a parking lot
with an area of 2, 971 sqm, the variation in occupancy be-
tween the Saturday and the Sunday image is not as easily
discernible. This limitation highlights the need for an auto-
mated, scalable approach based on computer vision to deter-
mine whether a parking lot is occupied or empty, particularly
when visual cues are subtle or ambiguous.

In this work, we set out to overcome expensive labeling
efforts usually required for supervised learning tasks. For
our study, we used PlanetScope images worth around EUR
3, 400. In comparison, acquiring a similar training dataset
(i.e. about 400 parking lots captured on average 48 times
across a span of 9 years, namely 2016 to 2024) for esti-
mating parking lot occupancy based on a traditional car de-
tection approach (i.e. high-resolution imagery + car detec-
tion model), it would cost between EUR 450, 000 and EUR
500, 000 depending on the vendor and discounts. Apart from
the costs, the availability of (historic) high-resolution im-



Figure 1: (Top row) A PlanetScope imagery showing the
parking situation of a large parking lot observed on a typical
Saturday (left), a typical Sunday (right). (Bottom row): A
PlanetScope image showing the parking occupancy situation
on a small parking lot observed on a Saturday (left), and a
Sunday (right).

agery also limits the number of applications that can be ex-
plored. To address the above challenge, we leverage weak
supervision learning to infer occupied and empty parking
lots from satellite images captured on Saturdays and Sun-
days, respectively. Our contributions in this work include the
development of a pipeline for acquiring parking lot polygons
from OpenStreetMaps (OSM)3 based on Places of Interest.
The full processing pipeline is published alongside the paper
on GitHub4.

Data
As illustrated in Figure 2, we first identify Places of Interest
(POI), specifically supermarkets and hardware stores (DIY),
as these locations typically have dedicated parking lots. For
each supermarket or hardware store, we retrieve the nearest
parking lot polygon from OSM. In order to ensure that only
clearly identifiable parking lots are selected, we also limit
our search to rooftop and surface parking lots that are open
to customers to reduce the inclusion of irrelevant parking
areas, such as private or abandoned parking spaces, which
could introduce further noise into the dataset. Additionally,
we set a proximity threshold of 10 m around each POI to
exclude distant parking lots that may not be directly asso-
ciated with the identified POI. After applying these selec-
tion criteria, we identify a total of 745 parking lots across
Germany. We obtain both 4-band and 8-band ortho-rectified
surface reflectance PScene images using the Planet API for
the summer period (April - September), from 2019 to 2023
and April - May in 2024. This season was chosen because
cloud cover is generally lower. PlanetScope imagery is cap-

3https://www.openstreetmap.org
4https://github.com/Societal-Computing/equitable mobility
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Figure 2: Data acquisition pipeline from POI identification
on OSM to acquiring PlanetScope images.

tured by a constellation of small satellites at a spatial resolu-
tion of 3m, known as CubeSats, which capture images of the
world on a near-daily frequency. However, due to variations
in satellite coverage and stitching, some images only par-
tially covered our parking lots, leading to inconsistencies in
image dimensions. To address this issue, for a single parking
lot, we removed all images that do not fully cover the area
of interest.

Furthermore, we utilize the improved Usable Data Mask
(UDM2), which accompanies each ortho-rectified analytic
PlanetScope image, to filter out images containing cloudy
pixels. Additionally, to maintain consistent brightness across
images, we remove any image whose histogram distribution
differs by more than 0.2 from that of the median image for its
corresponding parking lot. This step helps to mitigate bright-
ness variations introduced by different satellite sensor cap-
tures, ensuring uniformity in the dataset.

After these preprocessing steps, we retain 683 parking lots
which include 355 large parking lots (≥ 10, 000 sqm) , 142
medium parking lots (between 5, 000 sqm and 10, 000 sqm)
and 186 small parking lots (≤ 5, 000 sqm).

Model
Our main contribution in this paper is the weak supervision
learning approach from the observation made on parking lots
of large supermarkets and hardware stores in Germany. We
also show a baseline model which we use to evaluate our ap-
proach. The processing is illustrated in Figure 3 below. The
data that goes into the model are image pairs, and their cor-
responding labels. We assign label 1 for a Saturday-Sunday
pair for image 1 and image 2, respectively, and assign label
0 for a Sunday-Saturday pair for image 1 and image 2, re-
spectively. Our pairwise comparison model consists of two
encoders, namely Encoder 1 and Encoder 2 with weight
sharing. Each encoder converts the input image into a 128
feature vector. Specifically, Feature 1 for image 1 and Fea-
ture 2 for image 2. We then do a simple difference between
the the feature vectors and the results serve as an input to a
two-layer MLP. The purpose of the MLP is to project the
128 vector from the differences between Feature 1 and Fea-
ture 2 to a single output neuron. We then apply a sigmoid
function to convert the logit values to probability values.

We use ResNet50 (He et al. 2016) as our encoder, based
on its high accuracy on remote sensing classification tasks
(Harini et al. 2024) and parking lot estimation tasks (Thakur
et al. 2024), we also used a threshold value of 0.5 to sepa-



Figure 3: Given a pair of images, Encoder 1 and Encoder
2 are used to extract features of a lower dimension, yielding
Feature 1 and Feature 2 for image 1 and image 2 respec-
tively. The difference between the feature vectors is then
projected to a single output with a Multi-Layer Perceptron
(MLP).

rate output class 0 from 1. We will release a robust compar-
ison with other encoders in future works as our main goal
in this paper is to introduce the weak supervision learning
approach. Also we consider our pairwise comparison model
as a baseline to future approaches.

Experiments
We perform an 80-20 train-test split at the parking lot-level
separately for large, medium, and small parking lots, using
the same pairwise comparison approach. We observe from
our results in Table 1, that for large and medium sized park-
ing lots, the model is able to distinguish between occupancy
difference between Saturday and Sunday images. However,
for small parking lots our approach yields a low AUC score,
which we attribute to the difficulty in identifying relatively
occupied and empty parking lots of parking lot of small size.
We consider a further analysis on small parking lots as a fu-
ture work.

Parking lot size AUC Score
large parking lots 0.92
medium parking lots 0.91
small parking lots 0.65

Table 1: AUC score of pairwise comparison for different
parking lot sizes.

In our final experiment, we seek to validate our approach
in the context of the on-going conflict between the Sudanese
Armed Forces and the Rapid Support Forces that broke
out in April 2023. As reported by Guo et al. (2024), there
were fewer cars in Sudan during the post war period (April
14–21, 2023) compared to the pre war period (April 1–7,
2023), as reflected by a decrease in nitrogen dioxide (NO2)
concentrations, which are primarily emitted by vehicles and
power plants.

To assess whether our method reflects this observation, we
analyzed PlanetScope images of the Jackson Bus Terminal
in Khartoum. Specifically, we select days of the week in both

the pre war and post war periods for which images were
available, then apply our pairwise comparison approach to
all possible image pairs (excluding pairs with the same date).
As shown in Figure 4, images captured during the war pe-
riod consistently received lower rankings than their pre war
counterparts, aligning with the observed drop in NO2 con-
centrations.

Figure 4: Pairwise comparison of day of week image rank-
ings for Jackson Bus Terminal in Khartoum. The pre war
period spans 2023-04-01 to 2023-04-07, and the post war
period spans 2023-04-15 to 2023-04-21. Images captured
during the war (orange bars) show consistently lower rank-
ings than their pre-war counterparts (blue bars).

Conclusion

In this work, we proposed a weak-supervision learning ap-
proach to distinguish relative parking lot occupancies via
pairwise comparisons. By exploiting Germany’s Sunday
closure law for large supermarkets and hardware stores,
we cheaply generated labels (“occupied” vs. “empty” pairs)
without manual annotation. Our experiments on large,
medium, and small lots show this proxy holds especially
well for large and medium facilities. Notably, a model
trained solely on large German lots was still able to de-
tect mobility shift of a bus terminal in Sudan during the
onset of the war. Despite the inexactness of our labels, this
cost-effective strategy opens the door to many real-world ap-
plications, such as detecting population movements around
Ukrainian borders, and measuring attendance drop-offs at
hospital or market parking lots during epidemics. In low-
income regions where high-resolution data are scarce and
public transport hubs or large open-air markets stand in for
parking lots, our weakly supervised framework can similarly
reveal aggregate human mobility patterns. Future work will
extend these case studies and explore real-time deployment
for disaster response and humanitarian aid. Overall, our find-
ings demonstrate that even “cheap” weak labels can unlock
scalable, global insights into human mobility trends from
satellite imagery.
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