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VME: A Satellite Imagery Dataset 
and Benchmark for Detecting 
Vehicles in the Middle East  
and Beyond
Noora Al-Emadi   1,2 ✉, Ingmar Weber   3, Yin Yang2 & Ferda Ofli   1

Detecting vehicles in satellite images is crucial for traffic management, urban planning, and disaster 
response. However, current models struggle with real-world diversity, particularly across different 
regions. This challenge is amplified by geographic bias in existing datasets, which often focus on specific 
areas and overlook regions like the Middle East. To address this gap, we present the Vehicles in the 
Middle East (VME) dataset, designed explicitly for vehicle detection in high-resolution satellite images 
from Middle Eastern countries. Sourced from Maxar, the VME dataset spans 54 cities across  
12 countries, comprising over 4,000 image tiles and more than 100,000 vehicles, annotated using both 
manual and semi-automated methods. Additionally, we introduce the largest benchmark dataset for 
Car Detection in Satellite Imagery (CDSI), combining images from multiple sources to enhance global 
car detection. Our experiments demonstrate that models trained on existing datasets perform poorly 
on Middle Eastern images, while the VME dataset significantly improves detection accuracy in this 
region. Moreover, state-of-the-art models trained on CDSI achieve substantial improvements in global 
car detection.

Background & Summary
Satellite imagery has become an essential instrument for a wide range of applications from agriculture1 and 
environmental monitoring2 to urban development3,4 and disaster response5. A recent review of object detection 
in satellite imagery highlights the difficulty of creating a general-purpose model that can handle thousands 
of diverse object categories and varying real-world conditions6. Instead, the study recommends focusing on 
task-specific models in narrower application areas, where success is more likely if large, well-annotated datasets 
are available. Therefore, our study focuses on vehicle detection in satellite imagery, a critical task with diverse 
real-world applications such as analyzing traffic flow and patterns for traffic management7,8, monitoring parking 
lot occupancy rates to support urban planning9, and modeling spatial-temporal changes in vehicle counts as a 
proxy for internal displacement monitoring10. To this end, we first present a novel labeled dataset called Vehicles 
in the Middle East (VME) to attenuate the under-representation of the region. We then construct the largest 
benchmark dataset, called Car Detection in Satellite Imagery (CDSI), by consolidating images from multiple 
existing satellite imagery datasets for enhanced global car detection.

Detecting vehicles in satellite imagery is challenging because each vehicle covers only a few pixels, clas-
sifying them as tiny objects. As a result, the surrounding context becomes crucial for accurately delineating 
these small objects. Several studies have been conducted on tiny object detection in satellite imagery11–13. A 
review comprehensively analyzed these methods based on five factors: data augmentation, multi-scale feature 
learning, context-based detection, training strategy, and GAN-based detection, and showed that these factors 
play a role in enhancing the detection performance in tiny objects14. Another systematic study on small object 
detection was conducted by reviewing existing literature on algorithms and datasets15. Two large-scale bench-
marks, SODA-D and SODA-A, were constructed for driving scenarios and aerial scenes. Several algorithms were 
evaluated on top of these benchmarks with in-depth analyses, resulting in discussions on backbone effectiveness, 
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hierarchical feature representation efficiency, and one-stage detector performance for small object detection. In 
addition, several studies were performed on vehicle and car detection16–19. These studies17,18 focus on the devel-
opment of new vehicle detection models, as well as the enhancement of existing ones, utilizing publicly available 
datasets such as DOTA20, VEDAI21, and xView22, fMoW23, VAID24, and AI-TOD25.

However, existing models for vehicle detection face challenges when applied to diverse real-world scenarios 
involving the analysis of satellite images from previously unexplored geographic regions26. For example, the 
visual context of a car on the road in Abu Kamal City, Syria (Fig. 1a) and Alexandria City, Egypt (Fig. 1b) present 
clear differences compared to a car on the road in Sydney, Australia (Fig. 1c) and Mexico City, Mexico (Fig. 1d). 
A noticeable contrast is evident in the appearance of built structures and land cover, stemming from unique dif-
ferences in the natural landscape, climate, economic development, urban planning, and architectural design in 
Middle Eastern countries. This contrast becomes more pronounced thanks to the rapid pace of urban develop-
ment in Middle Eastern countries driven by large-scale smart city projects as opposed to the more incremental 
urban upgrades seen in the US and Europe27,28.

Therefore, with the prevalence of datasets focusing on specific regions, a gap related to geographic bias has 
emerged, particularly in the Middle East as highlighted in Fig. 2. To bridge this gap, the VME dataset, collected 
from Maxar, spans 54 cities in 12 countries in the Middle East and comprises more than 4,000 high-resolution 
image tiles of 512 × 512 pixels with more than 100k vehicle instances. The ground-truth annotations were gen-
erated using a combination of manual annotation and semi-automated techniques through a crowdsourcing 
company. Additionally, the CDSI dataset constitutes the largest benchmark for car detection by expanding VME 
with images from other existing satellite imagery datasets, such as xView22, DOTA-v2.020, VEDAI21, DIOR29, 
and FAIR1M-2.030.

We conduct comprehensive experiments using advanced object detection models, such as TOOD31 and 
DINO32, and present baseline results on both individual and combined datasets. The VME baseline evaluation 
demonstrates a remarkable 56.3% improvement in mAP for car detection in the Middle East compared to mod-
els trained on existing datasets. Additionally, the model trained on the CDSI dataset, due to its greater diversity 
and scale, significantly enhances mAP50, with improvements ranging from 19.6% to 84.6% across all models 
trained on individual datasets. This newly developed dataset serves as a valuable resource for researchers and 
professionals in remote sensing, promoting progress in vehicle detection and satellite imagery analysis.

Methods
This section provides details about our novel VME dataset such as the different categories, image resolution, area 
coverage, and annotation format. Then, we elaborate on the new benchmark dataset (CDSI), where we collect 
car-related objects from the publicly available datasets and combine them with the VME dataset.

VME Dataset.  We constructed the VME dataset by collecting satellite images of different cities in the Middle 
Eastern countries such as Syria, Libya, Iraq, Jordan, Egypt, Qatar, Saudi Arabia, United Arab Emirates, Oman, 
Kuwait, and Bahrain. We included the most popular cities including the capitals of these countries. The city-level 
geographic distribution of the collected images in the VME dataset is highlighted with purple circles in Fig. 2, which 
includes underrepresented geographic regions for vehicle detection in satellite imagery, compared to the blue circles 
representing the distribution of images in the xView dataset. We note that the remaining datasets do not provide 
any geographical information at the country or city level and, hence, cannot be accurately represented on the map.

Image Collection.  For each city in our dataset, we identified the geographic area of interest (AOI) and collected 
high-resolution satellite images from Maxar Technologies, which provides access to a large archive of the world’s 
most recent pan-sharpened natural color images at a spatial resolution of up to 30 cm through a paid subscrip-
tion to their SecureWatch platform. To this end, we searched the archive for satellite images with (i) RGB color, 
(ii) less than 20% cloud coverage, (iii) a ground sampling distance of at most 50 cm (i.e., images at 30 cm, 40 cm, 
and 50 cm spatial resolution), and (iv) off-Nadir angle less than 30 degrees.

We downloaded a total of 2,714 image snapshots across all 54 city AOIs. The resulting images are large with 
an average dimension in the range of 22,475 × 24,043. Since this image size is too large for processing and labe-
ling directly, we generated random crops of image tiles with 512 × 512 pixels. This initially yielded a total of 
22,125 image tiles. We ensured the resulting tiles did not have any missing or undefined pixels. Furthermore, to 

Fig. 1  The distinct visual context of cars on the road in the Middle Eastern cities: (a) Abu Kamal, Syria, and (b) 
Alexandria, Egypt & other cities around the world: (c) Sydney, Australia22, and (d) Mexico City, Mexico22.
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keep the annotation budget under control, we manually discarded the tiles that did not have obvious objects to 
annotate, such as images with completely green or desert areas. As a result of this filtering, we had 4,303 image 
tiles to be annotated in the next step.

Image Annotation.  After inspecting the taxonomies of the existing satellite imagery datasets for vehicle-related 
classes, we defined a three-class taxonomy comprising car, bus, and truck classes in our dataset. We decided 
to collect oriented bounding box (OBB) annotations as certain applications, such as traffic management, 
can leverage the direction information as well. We employed Co-one (https://www.co-one.co/), an AI and 
crowdsourcing-based data platform that promises 95% annotation accuracy. The annotation process started 
with preparing the guideline handbook, which outlined the project overview, technical guidelines, targeted cate-
gories with definitions and examples, rules and tips for the annotation process, and the deliverable format. Then, 
the data annotation process was conducted with a crowdsource of 6000+ people, where each group focused on 
a specific category. Finally, an annotation review process was implemented to detect mislabeled annotations 
via a cross-validation system; and an expert was employed to correct such cases. After the annotation quality 
review process, final annotations were delivered. We provided images in lossless PNG format, and received OBB 
annotations in YOLO format as text (*.txt) files. Each annotation file contains the image name, and each line in 
the file represents a targeted object as follows: x1, y1, x2, y2, x3, y3, x4, y4, category_id, where (x1, y1) is the top left, 
(x2, y2) is the top right, (x3, y3) is the bottom right, and (x4, y4) is the bottom left point of OBB, and category_id 
indicates the class index as 0, 1, 2 corresponding to car, bus, and truck, respectively. Additionally, we obtained 
standard horizontal bounding box (HBB) annotations based on the minimum and maximum x and y coordi-
nates of the OBB annotations with their category. To better help the community utilize the dataset, we provide 
both the oriented and horizontal bounding box annotation files.

Final Dataset.  Out of 4,303 images annotated, 21 images were deemed damaged or corrupted and excluded 
from the dataset. Hence, the final dataset contains 4,282 images with a total of 113,737 objects comprising 
101,564 cars, 5,327 buses, and 6,846 trucks while 241 images do not contain any instances of the target object 
classes and are tagged as no_label. The distribution of classes is shown in Fig. 3a. Also, Fig. 3b,c,d highlight the 
area distribution of cars, buses, and trucks in pixels, respectively. It is observed that all of the car instances fall 
under the small object range (i.e., area (pixels) < 322) defined in the MS-COCO evaluation, specifically within 
the first half of the range (i.e., area (pixels) < 512) which is considered tiny objects. On the other hand, both the 
bus and truck instances fall mostly within the small object range (area (pixels) < 322), with almost negligible 
overlap into the medium object range (322 < area (pixels) < 962). We provide training, validation, and test sets 
of the dataset following a random split with a ratio of 5/8, 1/8, and 2/8, respectively. Table 1 presents the statistics 
for all VME categories, outlining the details of each split.

CDSI Dataset.  This section introduces the related object detection datasets in satellite imagery, such as 
xView, DOTA-v2.0, VEDAI, FAIR1M-2.0, and DIOR. Also, it describes the filtering and consolidation process of 
the CDSI dataset.

Fig. 2  The geographical distribution of VME, and xView, denoted as purple and blue circles, respectively. There 
is no geographical information reported for the remaining datasets.
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Existing Datasets.  We explored a large list of publicly available datasets for object detection to employ in our 
study. We excluded those with low-altitude, drone-based, and UAV-based datasets and the datasets with high 
ground sample distance (GSD) ranges or hidden contexts, such as COWC33, PaCaBa34, PSU35, and VisDrone36. 
Even some of the new datasets are not yet released, e.g., VehSat37 and EAGLE38. The following are the datasets 
we employed in our study.

xView22 is considered one of the largest publicly available datasets containing 846 images collected from 
Maxar at various locations around the world, as shown in Fig. 2. The images are available with 30cm/pixel spa-
tial resolution, and the average dimension of the images is 3316 × 2911. The dataset has 60 object classes with 
1 million object instances annotated using horizontal bounding boxes for all splits, while the ground truth of 
testing split is not available. The xView repository (https://challenge.xviewdataset.org/data-download) provides 
the training and validation images in TIF format and the annotations in GeoJSON format.

DOTA-v2.020 contains 2,423 images gathered from Google Earth, different satellites supplied by the 
Resources Satellite Data and Application Center in China, and aerial images supplied by CycloMedia B.V. The 
size of the images ranges from 800 to 20,000 pixels, and their spatial resolution varies between 0.1m/pixel to 

Fig. 3  Statistical properties of the object categories in the VME dataset. (a) Distribution of VME categories, (b) 
Area distribution of cars, (c) Area distribution of buses, (d) Area distribution of trucks.

Categories

Training Validation Test

# ann. # imgs # ann. # imgs # ann. # imgs

Car 63,051 2,449 12,055 510 26,458 988

Bus 3,079 964 674 183 1,574 394

Truck 4,140 1,041 1,004 225 1,702 428

All 70,270 2,505 13,733 525 29,734 1,011

Table 1.  Number of images and annotations in each category across training, validation, and test splits of the 
VME dataset.
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4.5m/pixel. The dataset contains 18 object classes and objects are annotated using both oriented and horizontal 
bounding boxes. The dataset is presented in three versions, where the final version (v2.0) contains a total of 
1,793,658 object instances of all splits, while the ground truth of the testing split is not available. The DOTA 
images were released with no geographical information. We obtained DOTA-v2.0 from its repository (https://
captain-whu.github.io/DOTA/index.html); the images are in PNG format and its annotations are in YOLO 
(TXT) format. Acquiring DOTA-v2.0 requires the users to download DOTA-v1.0 first, then get the v2.0.

VEDAI21 was built specifically for detecting vehicles in satellite imagery, such as boats, planes, tractors, cars, 
and vans. The dataset provides two sets of 1,246 images in colored and infrared format, each set at a different 
spatial resolution (12.5cm/pixel or 25cm/pixel), and hence, image dimensions (1024 × 1024 or 512 × 512 pix-
els). The annotation format used for the dataset is the oriented bounding box. No geographic information is 
revealed in VEDAI. In our study, we downloaded colored images with a spatial resolution of 25cm/pixel (i.e., 
image dimensions of 512 × 512 pixels) from the VEDAI repository (https://downloads.greyc.fr/vedai/). The 
annotations are stored in TXT files, reporting the four corners of OBBs with the category.

DIOR29 is another large-scale benchmark dataset for object detection in optical satellite images. It consists 
of 23,463 images annotated for 20 object categories and 192,512 object instances using horizontal bounding 
boxes. Spatial resolution of images is between 0.5m/pixel and 30m/pixel. The dataset claims to cover more than 
80 countries, but the specific list of countries has not been released. The dataset can be downloaded from DIOR 
repository (https://gcheng-nwpu.github.io/); which delivers the images in JPG format and the annotation files 
in PASCAL-VOC (XML) format.

FAIR1M-2.030 contains more than 20,000 images with more than 1 million instances of fine-grained object 
categories. The images are gathered from Google Earth and the Gaofen satellites, with spatial resolutions between 
0.3m/pixel and 0.8m/pixel. The object annotations were collected for five main categories and 37 sub-categories 
using oriented bounding boxes. It is stated that the dataset covers different continents; but the country- or 
city-level details about the image locations are not published. The dataset can be obtained from FAIR1M repos-
itory (https://gaofen-challenge.com/benchmark); its annotation files are presented in PASCAL-VOC (XML) 
format, and the images are offered in TIF format.

Category Mapping.  To construct a unified benchmark dataset for car detection in satellite imagery, we inves-
tigated the taxonomies of the aforementioned datasets. Each dataset labels car-related objects differently, using 
terms like “small car,” “small vehicle,” “vehicle,” “car,” or “van.” Thus, we visually inspected these categories 
to ensure they correspond to the same “car” object we are targeting. For instance, “small car” in xView and 
“small vehicle” in DOTA-v2.0 refer to standard cars, while in DIOR “vehicle” covers a broader range of vehicles  
(e.g., cars, trucks, buses, and vans), with “car” being a subset of this general category. Figure 4 illustrates the 
car-related objects across datasets that we target for constructing the CDSI dataset. We conclude that these 
classes can be mapped to the same object type, i.e., car, with certain conditions such as filtering by typical car 
size. Specifically, car-related categories were mapped to the car category in CDSI for objects with an HBB area of 
less than 400 pixels, as detailed in Table 2. To avoid the challenges associated with training an object detection 
model using only a single class, we ensured the model encountered hard negatives–objects similar in size to cars. 
To achieve this, we opted to group all other small objects into a single category called “other.” Similarly, instances 
from all other categories with an HBB area of less than 400 pixels were mapped to the other small object category 
in CDSI, as reported in Table 2. As a result, the CDSI dataset consists of two classes: “car” and “other.” The details 
about data processing and filtering steps are explained next.

Data Processing and Filtering.  Each dataset uses a different annotation style (e.g., OBB, HBB, or both) and 
adopts different data representation and file format (e.g., XML files with PASCAL-VOC format, TXT files with 
YOLO format, JSON files with MS-COCO format, etc.). To consolidate all of the datasets, we designed a data 
processing pipeline, illustrated in Fig. 5, with the following steps: 

Fig. 4  Example images with car-related objects in (a) xView22, (b) DOTA-v2.020, (c) VEDAI21, (d) DIOR29, (e) 
FAIR1M-2.030, (f) VME (our) datasets.
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•	 Annotation standardization: We standardize all the annotations from different datasets to HBB style. Then, 
we convert standardized annotations into MS-COCO format which is defined by four values in pixels (x_min, 
y_min, width, height).

•	 Car-related object size filtering: Given that we are interested in a GSD range of 30-50cm per pixel, we assume 
that an object with an area greater than 400 pixels is unlikely a car. To verify this assumption, we analyze the 
car size distributions in all datasets as in Fig. 6. This analysis reveals that an area size of less than 400 pixels 
reports for more than 90% of all car-related object instances across all datasets. Therefore, we decided to filter 
out all object instances with an area larger than 400 pixels; even if they were originally labeled as cars. During 
our visual inspection, we discovered that these cases often relate to labeling errors or images with spatial res-
olutions exceeding the targeted GSD range.

•	 Relabeling small objects: Using the same threshold, we repeat Step 2 to identify all other small object 
instances with an area less than 400 pixels and label them as “other” category.

•	 Training setups: Depending on the experimental setup, the car-related object instances are merged with the other 
small object instances to construct car-other setup for the model training. In contrast, only car-related objects are 
employed to form car setup for the model training (refer to the “Technical Validation” section for details).

Final Dataset.  Table 2 provides general information and summary statistics about all datasets (individual 
or consolidated) before and after the data processing and filtering pipeline. The final combined dataset, i.e., 
CDSI, contains a total of 23,250 images with 896,760 car-related object instances and 185,619 other small object 
instances. Note that we also created a version of CDSI, denoted as CDSI*, where we excluded VME dataset from 
the consolidation process to highlight the contribution of VME dataset. With regards to the training, validation, 
and test sets, we first created random splits of all images in each individual dataset after filtering with a ratio of 
5/8, 1/8, and 2/8 (as in the VME dataset). We then combined the resulting splits from different datasets to form 
the final data splits for both CDSI and CDSI* datasets. For instance, the CDSI training set is simply a union of 
training sets of all datasets, and the same rule applies for validation and test sets.

Data Records
The repository available at Zenodo39 consists of (a) the VME dataset, including satellite images and annotation 
files, and (b) the scripts and instructions for creating the CDSI dataset.

Overview of the repository files and their formats.  The repository is structured into four components 
as follows: 

•	 annotations_OBB: This folder holds TXT files in YOLO format with Oriented Bounding Box (OBB) annota-
tions. Each annotation file is named after the corresponding image name, with each line describing a targeted 
object as follows: x1, y1, x2, y2, x3, y3, x4, y4, category_id, where (x1, y1) is the top left, (x2, y2) is the top right, 
(x3, y3) is the bottom right, and (x4, y4) is the bottom left point of OBB, and category_id indicates the class 
index as 0, 1, 2 corresponding to car, bus, and truck, respectively. The annotation files of images that do not 
include any of the targeted objects are empty.

•	 annotations_HBB: This folder contains HBB annotations in separate JSON files for training, validation, and 
test splits, formatted according to the MS-COCO standard defined by four values in pixels (x_min, y_min, 
width, height).

•	 satellite_images: This folder contains VME images in PNG format, each with a resolution of 512 × 512 pixels.
•	 CDSI_construction_scripts: This directory contains all the necessary instructions for constructing the CDSI 

dataset, including: (a) guidelines for downloading each dataset from its respective repository, (b) scripts for 
converting each dataset to the MS-COCO format, located within the corresponding dataset folders, and (c) 
instructions for combining the datasets. The training, validation, and test splits are provided in the CDSI_con-
struction_scripts/data_utils folder. Each split file lists the images from each dataset used in the car detection 
experiments for both detectors.

Additional information on the environment setup and required packages is available in the README.md file.

Dataset Annotation
Image Resolution 
(m/pixel)

Original 
Categories

All 
Objects

All 
Images

Car-related 
Classes

Car-related 
Objects

Other Small 
Objects

Retained 
Images

xView HBB 0.3 60 601,718 846 small car 210,184 55,752 752

DOTA-v2.0 HBB/OBB 0.1 to 4.5 18 349,675 2,423 small vehicle 175,160 37,037 1,300

VEDAI OBB 0.25 10 3,754 1,246 car, van 1,422 1,292 1,057

DIOR HBB/OBB 0.5 to 30 20 192,512 23,463 vehicle 23,964 33,521 5,327

FAIR1M-2.0 OBB 0.3 to 0.8 37 594,482 24,775 small car, van 384,488 48,416 10,795

CDSI* (our) HBB 0.1 to 30 2 971,236 19,321 car 795,218 176,018 19,321

VME (our) OBB/HBB 0.3, 0.4, 0.5 3 113,737 4,041 car 101,542 9,601 4,019

CDSI (our) HBB 0.1 to 30 2 1,082,379 23,250 car 896,760 185,619 23,250

Table 2.  Statistics of car-related and other small object categories in different datasets. CDSI* indicates the 
version of CDSI without VME.
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Technical Validation
In this section, we perform a formal assessment of the quality of the VME annotations. Additionally, we provide 
details on benchmarks conducted across diverse setups and present analytical results to demonstrate the relia-
bility and validity of the VME and CDSI datasets.

VME Annotation Quality.  We implemented quality control to ensure the accuracy and consistency 
of the VME dataset annotations. We randomly selected around 5% of images across all 54 cities and resolu-
tions and labeled these images in-house (by the lead author) to establish ground truth. This process yielded 
5,664 ground truth annotations in 215 images. Next, we compared these labels with the annotations from the 
crowdsource-based platform to calculate True Positives (TP), False Positives (FP), and False Negatives (FN). We 
identified 5,496 TP, 7 FP, and 168 FN annotations. We then used these values to compute precision, recall, and F1 
scores as 0.999, 0.970, and 0.984, respectively. Although some objects were missed, the crucial factor is that the 

Fig. 5  Dataset consolidation pipeline and final experimental setups.

Fig. 6  Distribution of car sizes in (a) xView, (b) DOTA-v2.0, (c) VEDAI, (d) FAIR1M-2.0, (e) DIOR, and (f) 
VME (our) datasets.
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identified objects are indeed the targeted ones, making the minimization of False Positives a priority. This process 
demonstrates that the annotations are highly accurate.

Detection Benchmarks.  This section describes the benchmark setup and the application of state-of-the-art 
detection models to evaluate the technical quality and scientific significance of the VME and CDSI datasets. To 
this end, we explored three different setups to assess how varying number of images and objects (not necessarily 
cars) in a dataset affects the detection performance. In the first setup, we use the original datasets with their full 
taxonomy (i.e., all categories) to train object detection models. In the second setup, we use datasets containing 
only the images with instances of car and other small object categories. And, in the last setup, we use datasets 
containing only the images with car instances. To facilitate model training in the first setup, we created distinct 
training, validation, and test splits based on all the images in the original datasets using a ratio of 5/8, 1/8, and 
2/8, respectively. In the second and third setups, these initial data splits were reduced to subsets containing only 
those images with relevant object instances. It is important to note that, at training time, we utilized each dataset’s 
training and validation sets. However, at test time, we evaluated all trained models on the car-only test sets to 
obtain comparable performance scores. Table 3 presents the number of images and annotations across data splits 
and training setups (i.e., original, car-other, and car) for different datasets.

We conducted experiments using a state-of-the-art framework, Slicing Aided Hyper Inference (SAHI)40. 
SAHI is developed particularly for small object detection and provides a generalized slicing-aided inference and 
fine-tuning channel for detecting small objects. In SAHI, various object detectors were examined such as Fully 
Convolutional One-Stage Object Detection (FCOS)41, VarifocalNet (VFNET)42 and Task-aligned One-stage 
Object Detection (TOOD)31. In our study, we adopted the best-performing inference setup reported in SAHI, 
which is Slicing Aided Fine-tuning, Full-Inference, and Patch Overlap (SAHI+FI+PO) setting with TOOD 
detector from MMDetection library43. Additionally, we performed experiments with a more recent object detec-
tor called DINO32 with Swin-L option from the MMDetection library following the SAHI+FI+PO inference 
setting. We trained a total of 22 models using the TOOD detector with a batch size of 16 for 24 epochs with SGD 
optimizer. For the original setup, we started training with a learning rate of 0.01 whereas, for the other setups, we 
started with a learning rate of 0.005. In all training setups, the learning rate was configured to change at epochs 
9, 16, 22 with a learning rate decay equal to 0.1. Similarly, we trained a total of 22 models using the DINO Swin-L 
detector with a batch size of 2 for 36 epochs with AdamW optimizer with an initial learning rate of 0.0001, which 
was configured to change at epochs 27 and 33 with learning rate decay equal to 0.1. We ran all of our experi-
ments on an NVIDIA A100 80GB GPU.

VME Benchmark.  As we introduce our novel dataset for the first time, we perform experiments to provide 
baseline results. For this purpose, we train and test models with the original VME categories, utilizing both 
TOOD and DINO Swin-L detectors. Table 4 presents the class-specific and overall results obtained on the orig-
inal VME test set. TOOD achieved an overall mAP50 score of 58.5% whereas DINO Swin-L achieved 62.7%. 
Notably, DINO Swin-L outperforms TOOD by 7.2%, with improvements of 6.2%, 5.9%, and 10.2% in mAP50 
scores of car, bus, and truck categories, respectively. These baseline results highlight the challenging nature of 
the vehicle detection task and verifies our dataset’s reliability for this challenging task. Given these results, we 
believe our novel dataset focused on Middle Eastern cities will play a key role in advancing vehicle detection in 
similar regions. 

Figure 7 illustrates some examples of detection results from the baseline model applied to images from the 
Middle East sampled from the VME dataset. FP and FN are highlighted with yellow and magenta circles, respec-
tively. To prevent clutter, detections for each object category are visualized separately. The results demonstrate 
the model’s high detection accuracy, with occasional FP detections and rare FN occurrences, reflecting strong 
recall performance. These findings underscore the model’s robustness while identifying opportunities for reduc-
ing FP rates.

CDSI Benchmark.  This section provides a comprehensive benchmark across various datasets and setups, 
emphasizing the enhanced value introduced by the CDSI dataset. Additional analyses, including error evalua-
tion and data visualization, further illustrate the strengths and limitations of the CDSI benchmark.

Dataset

Training Validation Test

original car-other car original car-other car car

# cat. # imgs # ann. # imgs # ann. # imgs # ann. # imgs # ann. # imgs # ann. # imgs # ann. # imgs # ann.

xView 60 524 380923 468 170280 432 135398 110 94786 101 46178 91 38146 167 36640

DOTA-v2.0 18 1513 212720 796 123409 496 100250 317 55907 189 37907 113 33009 193 41901

VEDAI 10 772 2276 655 1650 451 900 162 477 137 367 95 178 183 344

DIOR 20 14547 119216 3302 34935 1958 15461 3050 23002 693 7034 411 2902 790 5601

FAIR1M-2.0 37 14756 311558 6180 226757 5474 202187 1732 81613 1031 63513 870 57013 2969 125288

CDSI* (our) 2 — — 11401 557031 8811 454196 — — 2151 154999 1580 131248 4302 209774

VME (our) 3 2505 70270 2495 68721 2449 63038 525 13733 521 13364 509 12051 988 26453

CDSI (our) 2 — — 13896 625752 11260 517234 — — 2672 168363 2089 143299 5290 236227

Table 3.  Statistics of the training, validation, and test splits in each experimental setup across datasets.
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Table 5 summarizes the results achieved by both detectors, TOOD and DINO Swin-L, on CDSI and its con-
stituents. Each row corresponds to a model trained on a particular dataset with a specific setup, e.g., all catego-
ries, car-other, and car. We evaluate each trained model on its own test set to quantify its in-domain performance 
as well as on the VME and CDSI test sets to assess its generalization capabilities. As highlighted before, we use 
car-only test sets in all cases for comparable results, which we discuss next. First, we observe that all the models 
trained on individual datasets exhibit poor performance on the VME dataset. Furthermore, the car detection 
performance does not improve even after combining all the existing datasets together (i.e., CDSI*). In essence, 
the models trained on existing datasets cannot effectively detect cars in images from the Middle East. In Fig. 8, 
the predictions of the VME car setup model are compared with the predictions of the models trained on xView 
and DOTA-v2.0 car setup on example images from the Middle East sampled from the VME dataset. The com-
parison shows that the models trained on xView and DOTA-v2.0 car setup struggle with detecting cars properly 
sometimes even in easy scenarios like cars on paved roads (top row).

Upon examining the CDSI dataset, the table presents the evaluation of predicting the CDSI test set across 
the trained models on each dataset individually, as well as the trained model on the CDSI. The results highlight 
the significance of the trained model on images from diverse sources, particularly in the context of detecting 
cars in satellite imagery. Additionally, the findings underscore the impact of incorporating the VME dataset in 
the trained model on car setup, revealing that the exclusion of VME in the trained model (CDSI*) leads to a 
decrease in mAP50 by 6% and 4.3% in TOOD and DINO Swin-L, respectively, when predicting on the CDSI 
test set.

To gain a deeper understanding of the significance of combining datasets (CDSI), we employed the Prithvi 
Foundation Model, a collaboration between IBM and NASA44,45, which was pretrained on large-scale remote 
sensing data, including Harmonised Landsat Sentinel 2 (HLS). We utilized the IBM-NASA-Geospatial pre-
trained model with t-SNE (t-Distributed Stochastic Neighbor Embedding)46, an unsupervised non-linear tech-
nique for visualizing feature embeddings, to explore how satellite images are represented in low-dimensional 
space based on their high-dimensional data. The t-SNE visualization helps in understanding the similarity 
between points, in this case, different satellite images from various datasets. The results, shown in Fig. 9, illus-
trate that the features of the FAIR1M-2.0 dataset are distinctly separate from the others. Additionally, xView 
shares some features with DOTA-v2.0 and DIOR, while VME shares certain features with DIOR and VEDAI. 
This outcome emphasizes the extent of training a model on a combined dataset for car detection (CDSI) and its 
implications for the field of car detection.

Setup

TOOD DINO

Car Bus Truck All Car Bus Truck All

mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50

all cat. 42 80.8 30.3 48.9 27.9 45.9 33.4 58.5 45.1 85.8 32.8 51.8 29.8 50.6 35.9 62.7

Table 4.  VME baseline results obtained by training and testing the object detection models on the original VME 
data splits with all object categories as presented in Table 1. All mAP results are presented in percentage (%).

Fig. 7  Detections on VME images employing VME baseline model trained on all categories. Yellow and 
magenta circles indicate examples of false positives and false negatives, respectively.
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To delve deeper into the details of Table 5, we analyze the performance across various setups using indi-
vidually trained datasets, VME and CDSI, and assess how their predictions performed on their respective 

Dataset Setup

TOOD DINO

Own Test Set VME Test Set CDSI Test Set Own Test Set VME Test Set CDSI Test Set

mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50

xView

all cat. 19.8 48.9 13.9 32.5 24.6 52.8 21.8 53.7 23.9 56.4 27.4 61.4

car-other 19.6 49.3 16.3 39.6 21.7 51.5 19.8 50.1 22.4 53.4 27.2 60.5

car 20.2 49.8 15.8 38.2 24.5 55.2 20.3 51.4 23.9 56.4 27.4 61.4

DOTA-v2.0

all cat. 15.9 32.0 18.4 42.6 27.4 58.3 16.6 33.0 22.9 50.8 28.3 60.1

car-other 18.1 35.8 17.6 44.4 26.6 58.2 17.7 36.0 17.9 39.5 28.5 60.6

car 18.2 36.3 21.2 53.3 27.3 59.3 19.0 37.1 23.9 55.3 28.2 62.2

VEDAI

all cat. 63.5 89.7 2.3 4.8 14.5 37.6 55.1 89.1 1.7 4.2 15.0 40.1

car-other 61.7 92.0 9.0 4.0 13.1 33.9 56.8 91.0 1.4 3.1 16.9 41.9

car 47.1 81.7 2.4 5.1 15.7 40.2 52.3 87.7 1.9 4.7 15.4 40.3

DIOR

all cat. 29.2 59.4 12.1 32.5 20.2 47.9 28.9 58.1 17.2 41.7 23.8 53.3

car-other 36.0 71.5 13.6 35.7 23.7 55.1 34.4 69.3 17.3 40.7 24.8 58.4

car 30.9 65.9 12.0 33.5 20.9 51.9 31.5 65.8 20.2 47.7 26.7 60.1

FAIR1M-2.0

all cat. 48.1 83.1 3.6 6.4 28.6 50.9 50.8 85.2 4.2 7.3 30.3 52.7

car-other 52.0 90.3 5.5 10.9 32.5 59.3 52.0 90.7 5.5 9.7 32.2 59.0

car 51.7 89.7 7.3 15.8 33.1 61.1 52.2 90.3 8.2 16.7 33.0 61.2

CDSI*
car-other 39.8 72.7 20.7 47.2 37.4 69.1 39.8 72.9 24.4 51.0 37.9 69.8

car 39.9 72.5 22.0 50.0 37.9 69.6 39.9 72.8 29.3 62.3 38.7 71.3

VME

all cat. 39.8 76.3 39.8 76.3 25.5 53.0 44.5 84.0 44.5 84.0 29.6 60.7

car-other 41.5 80.8 41.5 80.8 25.9 55.1 45.6 86.2 45.6 86.2 28.8 59.8

car 42.2 81.2 42.2 81.2 25.9 54.5 45.8 86.5 45.8 86.5 27.9 58.8

CDSI
car-other 40.6 73.8 43.3 82.3 40.6 73.8 40.6 74.5 46.1 86.8 40.6 74.5

car 40.5 73.8 43.0 81.9 40.5 73.8 40.7 74.4 45.7 86.4 40.7 74.4

Table 5.  Experimental results achieved by TOOD and DINO Swin-L detectors trained on various datasets 
under different setups. The evaluation results are obtained on each dataset’s own car-only test set, VME car-
only test set, and CDSI car-only test set with SAHI+FI+PO inference setting. All mAP results are presented in 
percentage (%).

Fig. 8  Comparison of detections on VME images employing the model trained on VME car setup versus 
detections of the models trained on xView and DOTA-v2.0 car setup.
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car-only test sets, VME car-only test set and CDSI test set. Overall, the car setup performed better with the 
TOOD detector in most setups, except for VEDAI and DIOR, which produced better results in the car-other 
setup in terms of mAP50(%). When focusing on TOOD models trained on other datasets in the car setup and 
evaluated on the VME test set, results reveal poor performance. Notably, low mAP50 scores were observed for 
models trained on VEDAI (5.1%) and FAIR1M-2.0 (15.8%), likely due to VEDAI’s limited number of images 
and annotations, which struggled with car detection in images with varied resolutions and higher car densities. 
Despite FAIR1M-2.0 being the largest dataset in terms of car-related objects and images, Fig. 9 indicates that its 
image features differ significantly from those of the VME dataset. A similar pattern is seen in all categories and 
car-other setups for all models. On the other hand, DINO Swin-L shows slight improvement across all trained 
models, mirroring the pattern observed with TOOD. Notably, the model trained on CDSI in the car-other setup 
achieved the highest mAP50 score (86.8%) on the VME test set.

To investigate the root causes of errors, we perform an analysis of the detection results47 from the DINO 
Swin-L model trained on VME and CDSI using the car-other setup. Figures 10 and 11 show a breakdown of 
errors for the car class for VME and CDSI, respectively. The error analysis provides various insights to identify 
areas for improvement, including: 1) IoU thresholds of 0.75, 2) IoU thresholds of 0.50, 3) post-localization error 
removal, 4) false positives within supercategories, 5) category confusion, 6) background false positives, and 7) 
false negatives, represented as C75, C50, Loc, Sim, Oth, BG, and FN, respectively. Note that the area under each 
Precision-Recall curve is shown in brackets in the legend. In the case of VME (Fig. 10), overall AP at IoU=.75 is 
0.432 (C75), and simply lowering IoU=0.5 increases the AP to 0.861 (C50), whereas perfect localization could 
increase AP to 0.898 (Loc). We observe some error due to the confusion between the car and other categories 
and removing such class confusions would only raise AP slightly to 0.909 (Oth). However, we see a bigger 
room for improvement by eliminating background false positives (i.e., confusions with other small background 
objects), which boosts the AP to 0.99 (BG). Surprisingly, in the case of VME, the model does not suffer too much 
from false negatives (i.e., missed detections). On the other hand, for the model trained on CDSI (Fig. 11), we 
see similar trends in general regarding the errors due to category confusions and background false positives. 
However, resolving such issues can boost AP to a maximum of 0.851 (BG), which means the rest of the errors 
are missing detections. The missed detections in the model trained on CDSI are due to the diversity in object 
instances and variations in image characteristics collected from different regions. In summary, both plots illus-
trate that the errors are dominated by imperfect localization and background confusions.

Usage Notes
The VME dataset and the script for creating the CDSI dataset are available at Zenodo39. VME images are avail-
able in resolutions ranging from 30 to 50 cm per pixel. However, the climate conditions in the Middle East, 
including haze and airborne dust, can affect the clarity of these images. As a result, some images may have a 
blurry appearance or exhibit reflections.

Fig. 9  t-SNE visualization of the proposed CDSI dataset.
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Code availability
The data preprocessing script for constructing CDSI dataset, which is written in Python, is available on 
Zenodo39 and GitHub repository (https://github.com/nalemadi/VME_CDSI_dataset_benchmark) under CDSI_
construction_scripts folder. The file README.md provides detailed instructions for building the CDSI dataset, 
which includes downloading the datasets, converting each to MS-COCO format, and explaining the combination 
mechanism. Each subfolder is named after its corresponding dataset and contains a conversion script to MS-
COCO format. All the required Python packages are listed in the requirements.txt file located within the CDSI_
construction_scripts folder.
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