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Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to 
providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine 
war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely 
information. Satellite imagery may sidestep some of these challenges and enhance our understanding 
of the IDP dynamics. Our study thus aimed to evaluate whether internal displacement patterns can 
be estimated from changes in car counts using multi-temporal satellite imagery. We collected over 
1000 very-high-resolution images across Ukrainian cities between 2019 and 2022, to which we applied 
a state-of-the-art computer vision model to detect and count cars. These counts were then linked to 
population data to predict displacements through ratio or non-linear models. Our findings suggest 
a clear East-to-West movement of cars in the first months following the war’s onset. Despite data 
sparsity hindered fine-grained evaluation, we distinguished a clear positive and non-linear trend 
between the number of people and cars in most cities, which further allowed to predict the sub-
national people dynamics. While our approach is resource-saving and innovative, satellite imagery 
and computer vision models present some shortcomings that could mask detailed IDPs dynamics. We 
conclude by discussing these limitations and outline future research opportunities.

Keywords  Car Detection, Satellite Imagery, Convolutional Neural Network, Crisis Response, Migration, 
Societal Computing

Main
Millions of civilians are uprooted each year from their places of residence due to conflicts, human rights 
violations, and natural disasters1. The number of forcibly displaced people has more than doubled over the 
past decade, reaching a record high of 100  million in 20222. Internally displaced people (IDPs), i.e., people 
forced to leave their homes but who remain within their country’s border, accounted for more than 70% of the 
recorded movements, marking a 20% increase compared to the previous year3. According to the latest report of 
the Internal Displacement Monitoring Centre (iDMC), the escalating number of conflicts and violence in the 
past year pushed the figure to an unprecedented 28.3 million displacements worldwide3. Such alarming numbers 
raise international concerns, as IDPs are amongst the most vulnerable people and often in need of humanitarian 
assistance to ensure their safety, as well as access to medical care, services, and food1.

While there have been wide-ranging international efforts to measure the scale of cross-border population 
flows, estimation of within-country migration flows is particularly prone to inaccuracies, lack of timely updates, 
and lack of disaggregation, e.g., by age4,5. This also applies in the context of the ongoing Russia-Ukraine War, 
which triggered the largest humanitarian crisis in Europe since World War II. As of October 2024, over 40 million 
border crossings from Ukraine have been registered since the start of the war (24 February 2022), in addition to 
6.7 million Ukrainians who sought refuge in neighbouring countries and another 3.5 million within the borders 
of their country6,7.

The volatile situation of the conflict has resulted in pendular migration not only between Ukraine and 
adjacent countries but also within the country itself. Although public authorities have a good understanding of 
the population flow to and from receiving countries, less is known about the Ukrainians’ displacement pattern 
at the sub-national level8. This is a crucial limitation, as Ukraine currently lacks intermediary institutions that 
could ensure periodic assessments throughout the country.
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To date, most information on IDPs is collected by humanitarian organizations through either phone- or field-
based surveys9,10. In a conflict or disaster, however, these traditional data sources often fail to provide accurate 
and timely information, especially during the acute phase of the displacement crisis5,9. In armed conflicts, 
on-the-ground enumerators can be exposed to life-threatening risks, or have their access hindered by either 
infrastructural damages or inaccessibility to more remote areas11. As a consequence, most countries rely on 
a patchwork of IDP estimates that arise from various independent assessments, each of which is collected for 
different purposes that ultimately yield conflicting IDP estimates9.

In light of such limitations, the use of non-traditional data for monitoring mobility patterns has gained 
momentum among both the scientific and the humanitarian community due to their untapped potential to 
sidestep some of the current data limitations9,12,13. A substantial body of research has explored the potential 
use of anonymized call detail records (CDR) from mobile phone operators to monitor mobility patterns14,15. 
For example, studies have shown how CDR can track the spread of communicable diseases, such as the work by 
Wesolowski et al.16,17 on malaria, and Oliver et al.18 on COVID-19. Additionally, CDR data has been useful to 
measure communication patterns within particular communities such as the Syrian refugees in Turkey19, as well 
as to analyze internal displacement trends as exposed by Shibuya et al.20 in the context of the Russia-Ukraine 
War.

While CDR data is undoubtedly useful, procuring access is a major hurdle and needs to be negotiated for 
each telecom operator individually. Moreover, there are difficulties in quickly transferring a methodology from 
one country to another as different telecom operators might apply different processing and aggregation methods, 
and might fall under different national regulations. To address these concerns, a growing body of literature has 
been exploring digital traces from social media platforms, which are more easily accessible and persistent across 
countries [e.g., Refs.8,10,21–23]. Others, in turn, have been relying on satellite imagery to estimate population 
dynamics through either refugee settlement detection12 or analysis of nightlights data24,25.

Building upon these studies, we advocate that satellite imagery bears a fertile, and yet largely under-explored, 
ground for studying internal population displacements. News channels all around the world reported the fleeing 
of thousands of Ukrainians by means of personal or shared vehicles during the first weeks following the full-
scale Russian invasion. Countless numbers of vehicles stretching dozens of kilometers have been recorded at the 
major checkpoints on the Western border, capturing the evasion of Ukrainians from the Eastern to the Western 
regions [e.g., Refs.26–28].

This vehicle-facilitated displacement behavior raises the question of whether internal displacement patterns 
can be estimated from the spatial-temporal changes in car counts obtained from satellite imagery. To pursue 
this research question, we collected a total of 1009 very-high-resolution satellite images between 2019 and 
2022, spanning 61 cities across Ukraine (Fig. 1; see section Material & Methods for more details about data 
collection and processing). Of these images, only 534 images remained for analysis after undergoing our data 
post-processing pipeline, with most cities remaining with less than 10 images throughout the time series (see 
Supplementary Fig. S1). Furthermore, the monthly data availability was generally sporadic for all cities, with 
several temporal gaps along the time series (i.e., months without any data) (see Supplementary Fig. S2). However, 
data coverage was much better during the months succeeding the start of the war than during the pre-conflict 
period, especially for cities heavily involved in the conflict (e.g., Kharkiv, Donetsk, Mariupol, Odessa, and Ivano-
Frankivsk; see Supplementary Fig. S2). This likely reflects operational adjustments by the satellite operator in 
response to the demand for images from the conflict areas.

Despite the data shortages, visual inspection of these images revealed some clear pre-war vs. wartime patterns 
in the number of cars across multiple cities. For example, Mariupol, one of the most heavily affected cities by the 
war, suffered a massive drop in the number of cars during the first month succeeding the war when compared 
with the same month and region prior to the COVID-19 pandemic (Fig. 2a, b). The opposite trend was observed 
for the city of Uzhhorod on the Slovakian border, with a substantial increase in the number of vehicles during the 
months succeeding the outbreak of the war when contrasted to the pre-war period (Fig. 2c, d).

These two examples illustrate the apparent connection between the number of cars and people, as the car 
dynamics seemingly follow the general East-West migration pattern that has been previously reported for 
Ukraine8,10. On this basis, the current study proposes a novel methodology to estimate IDPs, using the ongoing 
Russia-Ukraine War as a motivating case study. By using a computer vision model in combination with a robust 
statistical analysis, we modelled the population-car relationship for multiple cities and estimated the sub-
national people displacement whenever applicable.

Results
In the following two sections, we first describe our more basic and measurement-centric analysis of (raw) 
car counts (see section “Spatio-temporal car dynamics”). Subsequently, we describe a more advanced and 
modelling-centric analysis that uses the changes in car counts to estimate changes in population counts (see 
section “Inferring IDPs from cars”).

Spatio-temporal car dynamics
Evaluating the car dynamics on a monthly resolution was largely infeasible, given the temporal data gaps within 
each city (see Supplementary Fig. S2). Nevertheless, trends in the car dynamics become more apparent at coarser 
temporal resolution and we therefore present the following results on a quarterly and yearly resolution to ease 
interpretation (Fig. 3).

At the quarter-of-year resolution, our results suggest an increasing and progressive trend of car displacement 
from East-to-West throughout the year (Fig.  3a). However, these results still suffer from considerable data 
shortages for some parts of Ukraine.
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Analyzing the relative changes at the yearly level provided instead a more robust picture of the cars’ internal 
displacement (Fig. 3b). Except for Rivne, oblasts to the West were marked by a substantial increase in the number 
of cars. A particularly large increase was observed for Ivano-Frankivsk (412%) and Lviv (401%) (Fig. 3b). Oblasts 
in the central region of Ukraine depicted a more transitional state, as car density increased in some oblasts (e.g., 
Zhytomyr (472%), Cherkasy (307%), and Chernihiv (107%)), and decreased in others (e.g., Kherson (-98%), 
Poltava (-76%), and Kiev city (-75%))(Fig. 3b). The Eastern region, in contrast, was marked by a clear outflow 
of cars, with Donetsk (-90%), Dnipropetrovsk (-87%) and Mykolaiv (-72%) recording the largest drop (Fig. 3b). 
Kharkiv and Luhansk were an exception to this, given the number of cars increased for these two oblasts when 
contrasted to the number of cars circulating prior to the war (2019). Luhansk, indeed, recorded the highest 
increase among all Oblasts (+ 773%) (Fig. 3b).

At a high level, these aggregated results indicate a clear East-to-West movement, with some key oblasts 
suggesting potential cross-border movements (e.g., Odessa (Moldova), Ivano-Frankivsk (Romania), Lviv 
(Poland), Zhytomyr (Belarus), and Luhansk (Russia)) (Fig. 3b).

Inferring IDPs from cars
Translating from shifts in car distribution to shifts in population distribution requires a model of the linkage 
between the two. To obtain such a model, we put fine-grained 2019 population counts in relationship to car 
counts from satellite imagery for the same year, and use the estimated relationship to predict population shifts 
along the first months following the start of the war.

There is a general positive link, i.e., areas with larger populations also have more cars visible in satellite 
imagery, which reinforces our initial hypothesis (Fig. 4). Oleksandriya was nevertheless an exception to this, 
as there is virtually no relationship between its population and the number of cars (Fig. 4). Curiously, there is 
variation in the exact curve linking population and car counts (Fig. 4 and Supplementary S3-S7). Furthermore, 
some highly populated areas were associated with a particularly low number of cars. Visual inspection suggests 
that such cases occurred mainly in dense residential areas where cars could be parked in closed spaces such as 
garages. It is likely that other factors such as differential rates of car ownership, street parking availability, and 
access to and quality of public transportation could also explain this variation.

To model this car-to-people relationship, we explored two approaches with distinct levels of complexity. 
In the first approach, we assumed that the 2019 car-to-people ratio still applies in the following years while 
remaining constant within areas; hereafter the ratio method. That is, if for a given area in a city the number of 

Fig. 1.  Map of the study region highlighting the selected areas of interest (AOI) in orange within each Oblast. 
An “oblast” in Ukraine is the main type of first-level administrative division, equivalent in hierarchy, though 
not in absolute size, to states in the US context. The gray-dashed area depicts the occupied territories of Crimea 
and Sevastopol, both excluded from the current study. This map was created using R software v.4.3.
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Fig. 2.  Satellite images showing the effect of war on the number of cars circulating in two distinct Ukrainian 
cities before and during the war. Panels (a) and (b) depict a snapshot of Mariupol before (12.02.2021) and 
during (29.03.2022) the war, respectively, highlighting the region around the Donetsk Academic Regional 
Drama Theatre that was heavily bombarded on 16th March. Panels (c) and (d) show close-up shots of the 
area around the Transcarpathian Regional Clinical Hospital of A. Novak before (30.04.2019) and during 
(14.04.2022) the war, respectively, located in the city of Uzhhorod. While Mariupol presented a massive drop 
in the number of cars in the first month following the start of the war, Uzhhorod depicted the opposite trend. 
Satellite images © 2019–2024 Maxar Technologies.
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visible cars drops by, say, 40% compared to 2019, we assume that the population in that area has also dropped by 
40%. This approach is intuitive, but it has a risk of “overfitting”, and it always assigns a population count of zero 
to areas without visible cars. Moreover, an additional limitation is that the fixed car-to-population relationship 
fails to account for changes in urbanization levels, an aspect that is likely to occur in the long-run for any city 
or areas within the city. We nevertheless deem that this effect was negligent in our case study, given the narrow 
time window (2019–2022) which also involved two years of heavy economic recession that was driven by the 
COVID-19 pandemic.

In the second approach, we relied on Generalized Additive Model (GAM) as it provides a more flexible 
function to estimate the cars-to-people relationship; hereafter the regression method. Unlike the ratio method, 
this approach tends to overestimate the population size, as it typically assigns the function’s average to all areas, 
including uninhabited areas. By using these two distinct methods, we can ultimately derive lower and upper 
bound estimates, and thereby provide a proxy for uncertainty in our population size estimates.

Overall, we could estimate IDPs for 43 out of the 61 evaluated cities. The remaining cities did not have 
any comparable month between the baseline (2019) and the other two years (2020, 2022), and were thus not 
considered for further analysis. For an in-depth overview on our above data analytical assumption, we refer the 
reader to the Material & Methods section. For the majority of applicable cases, our findings indicated that the 

Fig. 3.  Change in average car density for all Ukrainian primary administrative units (Oblasts) during the 
first year of war (2022). Values reflect the percentage change in average car density after the start of the war 
(24 February) relative to the baseline (2019) for either quarterly (a) or yearly (b) temporal resolution. Oblasts 
colored in dark gray represent cases in which the relative change could not be calculated due to missing data 
for either or both years. The occupied territories of Crimea and Sevastopol were not considered in the current 
study (dashed areas). This figure was created using R software v.4.3.
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population was larger during the first COVID-19 year than during the conflict year (e.g., Bila-Tserkva, Donetsk 
and Odessa; see Supplementary Figs. S8 and S11), as one might expect.

Although the population estimates could differ substantially between the two prediction methods (i.e., ratio 
and regression methods), their general trend remained consistent (Fig. 5 and Supplementary S8-S12). While 
the ratio method predicted usually much larger population drops (or increases), the regression method resulted 
in milder and less extreme predictions. Following the ratio method, for example, more than 88% of Mariupol’s 
population emigrated in March 2022. These fluctuations are dampened when considering the estimates from the 
regression method, which predicted a decrease of only 30%. Such discrepancies are naturally expected, given 
that the GAM approach adds the average population of the baseline year into its calculation, unlike the ratio 
approach which considers only the fixed population-to-car ratio.

For a handful of cities, some months in the regression approach were marked by either suspicious population 
sizes (e.g., Berehove and Mamalyha in Supplementary Figs. S8 and S10, respectively), or differing population 
trends between the two prediction methods (e.g., Donetsk, Luhansk and Shehyni in Supplementary Figs. S8, S10 
and S12, respectively). This likely results from poor model fit, violation of one or more model assumptions, or 
because the number of cars during the conflict year was simply far outside the model’s prediction range.

The results from the GAM approach generally revealed a good performance in terms of goodness-of-fit, as 
most of the evaluated cities (25/43) displayed a coefficient of determination above 60% (see Supplementary Table 
S1), and followed reasonably well the evaluated model assumptions (refer to Supplementary S13 for an example). 
This means that the city-specific baseline population sizes could be generally well estimated by the number of 

Fig. 4.  Relationship between the (gridded) average number of people and cars for four selected cities 
during the baseline year (2019). For most cities, the relationship is positive and non-linear akin to Kiev (a). 
Occasionally, the relationship is linear as for Uzhhorod (b), and rarely there is no (clear) relationship as in 
Odessa (c) or Oleksandriya (d). The orange smoothed function highlights the trend line from the GAM model 
bounded by its 95% confidence interval, with circle sizes scaled by the population/car ratio. Each data point 
assembles information from a unique grid cell (1 × 1 km) within the given city. For a complete overview, refer 
to Supplementary Figs.  S3-S7.
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cars, and the model is as such suitable for predicting population during the war period. For models outside these 
conditions, we caution against any solid conclusion.

Irrespective of the prediction method, our results revealed similar trends in terms of people displacement 
across cities and oblasts. In line with the raw car dynamics reported previously, the current results also suggest 

Fig. 5.  Predictions of internally displaced people across three different cities (left panels). The orange line 
marks the pre-war population size (2019), from which relative change has been derived for the applicable 
months in either 2020 (first COVID-19 year, gray bars) or 2022 (war year, turquoise bars). Numbers on top 
of each bar denote the relative population change (in %), with colors reflecting either an increase (blue) or 
decrease (red). Dashed and plain bars distinguish the two tested prediction methods: linear ratio (dashed) and 
Generalized Additive Model (GAM, plain). Right panels depict the percentage of area covered by the satellite 
images underlying a given month relative to the city’s area of interest (AOI). Note that the larger population 
drops/increases for some cities and months should be interpreted with additional care, as it could be an 
artifact induced by the smaller spatial extent that is reflected by the underlying satellite images. The models for 
Uzhhorod, for example, predicted a population increase of up to 23% in April 2022 (left panels). This number 
is nevertheless likely underestimated, as the collection of satellite imagery for the given month covered less 
than 50% of the city’s extent (right panels). For the full set of results, refer to Supplementary Figs. S8-S12.
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an East-to-West movement of population (Fig. 5 and Supplementary Figs. S8 - S12). In the first months following 
the start of the war (March-April), cities in the West, such as Uzhhorod and Ivano-Frankivsk, also showed a 
substantial increase in the number of people compared to their pre-war population (Fig. 5 and Supplementary 
Fig. S9). The population of Ivano-Frankivsk increased substantially compared to all other western cities, with 
estimates ranging between +157% - +623% above the pre-war population size (see Supplementary Fig. S9). In 
contrast, cities in the East and more central regions, such as Kiev and Mariupol, mostly saw an outflow of people 
(Fig. 5 and Supplementary Figs. S8 - S12). Among those, the cities of Zaporizhzhia and Kherson were marked by 
the largest population drop, where the ratio method predicted a population decrease of more than 90% for both 
cities (see Supplementary Figs. S10 and S12).

Apart from the city-level comparisons, it might be of general interest to understand the displacement 
dynamics at the sub-city scale. Figure 6 shows an example of the predicted population for Kiev city for two 
different months in 2022, with Supplementary Figure S14 providing additional support by showing the results 
in relative terms. Regardless of the prediction method, our results clearly show an extensive emigration of its 
residents in the first month following the war (March), with the eastern side of the city marked by a larger 
population drop than the western side (see mid panels in Fig. 6). This picture changes completely three months 
later (June), when the eastern portion of the city seems to have recovered most of its initial population (see lower 
panels in Fig. 6).

Discussion
Estimating population displacement at the subnational level is inherently challenging due to its dynamic nature 
and the irregular collection of primary data. Our analysis demonstrates the potential that very-high-resolution 
satellite imagery holds for monitoring car-based internal displacement. The importance of such methods is 
likely to increase, as climate change and political and economic instabilities are bound to lead to additional 
displacement pressure worldwide in the years to come3,29,30.

We investigated two different approaches to predict IDPs and despite the occasional discrepancies, some 
clear movement patterns could be traced at both subnational and sub-city level. These approaches could be 
improved further if situation-specific information on the mode of (escape) transport is available, e.g. from post-
displacement surveys. However, groups such as the “caminantes”, who are leaving Venezuela on foot, will be 
invisible to our method. Similar challenges also apply to the use of mobile phone data, as the exact phone-to-
person link is context-dependent and parts of the population might have several mobile devices per person, 
while others have none. Connectivity can be additionally affected by power shortages or destroyed cell towers, 
and thus blurring the IDP dynamics.

Following our findings, most of the IDPs originated from the eastern region due to the decreased population 
estimates. Oblasts to the west, in contrast, were frequently associated with increased population estimates, 
suggesting as such their role as host regions. At the high-level comparison, these findings corroborate with the 
trends reported by the International Organization for Migration (IOM)6, and are further supported by those 
from Rowe et al.8 and Leasure et al.10. Comparing these estimates in absolute terms is nevertheless intractable, 
given the differences in spatial and temporal granularity, including the data source underlying the reference year. 
In the absence of ground-truth data with which our population estimates could be possibly validated, such high-
level data triangulation remains the only option at the time being.

While our study focuses on one country, Ukraine, and one satellite image provider, Maxar, we believe that 
the computer vision approach for detecting and counting cars will generalize to other geographic contexts that 
are similar in terms of car, building, road types, as well as to other providers of very high-resolution satellite 
imagery (30–50 cm). The benefits of such an approach are multifold for both the humanitarian and government 
sector, going from reduced life-treating risks for the on-ground enumerators to the rapidity at which population 
estimates can be generated as a response to the frequent imagery update. Besides, a major advantage of the 
current method is its transparency, unlike the black-box, and often biased, algorithms employed by social media 
platforms such as Meta.

Nevertheless, our framework holds some fundamental limitations that could hamper its broader diffusion. 
To start with, very-high-resolution imagery such as the ones used herein are not cheap to procure and require 
staff with technical skills to acquire, process, and analyze them12. This might impose a barrier for low- and 
middle-income countries, who already suffer from long-lasting funding restrictions. Additionally, it can take 
time to establish partnerships between governments and imagery providers.

Current computer vision techniques also come with limitations that can jeopardize the accuracy and 
generalization of any similar framework31,32. A typical constraint of AI-based models is the lack of ground-
truth data to perform their formal validation in the real world33,34. In the absence of a dedicated database, it is 
necessary to employ expert human annotators to manually label the images. This is not only costly and time-
consuming, but often infeasible in the context of humanitarian crises which require timely responses.

Some other constraints are intrinsic to the satellite images themselves. In our brief experiment, we showed 
the effect of weather- and cloud-based obstructions on car detectability, including imagery-related features such 
as color, off-Nadir angle, and image resolution (see section ”Understanding the effect of imagery features on 
car detection”). Given its unknown impact on population estimators, we largely encourage future research to 
investigate further the impact of such aspects on object detectability, and most importantly the use of high-
resolution synthetic aperture radar (SAR) imagery as a potential remedial solution to the limiting RGB-based 
images (https://umbra.space/).

Data sparsity was also a key limitation in the present study, mostly as a result from the pre-collected archival 
Maxar imagery. Despite the better spatial coverage and cadence of the freely available Sentinel-2 images, its 
spatial resolution of 10 m per pixel prevents the detection of small objects like cars. Most cars typically occupy 
less than a pixel, making it hard to distinguish them from the background. For this reason, we resorted to Maxar 
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Fig. 6.  Gridded population for Kiev city, with each grid cell measuring 1 × 1 km. The baseline population (a) 
was retrieved from WorldPop’s database, whereas the population for March and June 2022 were predicted 
through either the Ratio (b,d) or the GAM method (c,e). Note that the satellite images underlying the month 
of June 2022 covered only a fraction of the city’s AOI (a), which is also denoted in the right panels in Fig. 5. To 
interpret the present figure in relative terms, refer to Supplementary Fig. S14.
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images which offer higher spatial resolution (i.e., 0.3–0.5 m per pixel), yet come at the cost of lower spatial and 
temporal coverage as our analysis relied on pre-collected archival imagery, rather than on-demand task-based 
imagery.

However, it is worth to highlight that the number of earth observation satellites has improved rapidly, jumping 
from 789 in Aug 2020 to 1238 in May 202335, with a further increase expected. Furthermore, the cost of tasked-
based imagery has dropped to under USD 1000 per request36,37, down from over USD 10,000 a few years back, 
with further price drops expected. With improved data availability, it is likely to open some niche for exploring 
more advanced and robust statistical models to predict population shifts from observed car displacements, 
including, but not limited to, spatial and state-space models38,39.

Beyond the aforementioned cases, there remains the fundamental research challenge of tying the number 
of displaced cars to the number of displaced people. Behavioral changes induced by the war could likely affect 
the pre-war link between the number of visible cars and the number of people living in a given area. For 
example, one might assume that, when fleeing, the cars could be more packed. The drop in cars could be thus an 
underestimation of the drop in population. Conversely, the cars that remain might well become more hidden/
protected, overestimating as such the population displacement.

While our research focuses on computational methods for estimating internal displacement, it is important 
to acknowledge that such work does not happen in a political vacuum. In particular, there is a risk that any 
migration-related technology will be used to curb and restrict migration, rather than benefiting migrants40. And 
even if used with good intentions in a humanitarian context, more data could add noise and distract, while also 
creating privacy issues41. Despite these valid concerns, we believe that if developed and deployed responsibly 
through academic-humanitarian partnerships, satellite-based estimates can benefit displaced populations, 
reducing privacy risks related to the use of individual data, such as mobile phone traces.

Material & methods
Car detection and counting from satellite images
Automatic detection of small objects such as cars from satellite images is a difficult task, especially at a global scale, 
due to the diverse nature of environments across geographies, climate zones, and seasons. To tackle this challenge, 
many methods have been proposed using traditional approaches such as training classifiers (e.g., Support Vector 
Machines (SVMs)42 and Random Forests (RFs)16) over handcrafted features (e.g., Local Binary Patterns (LBP)43, 
Histogram of an Oriented Gradients (HOG)44, and Scale-Invariant Feature Transform (SIFT)45)46–48. However, 
more recent approaches leverage on large labeled image collections such as xView49, DOTA50, DIOR51, and 
FAIR1M52 by using various deep learning architectures based on Convolutional Neural Networks (CNNs)53–56. 
The CNN-based approaches have achieved better performance thanks to the capacity of deep neural network 
architectures to extract and learn object characteristics within an end-to-end framework51,57–64.

In this study, we employed the state-of-the-art ensemble CNN framework proposed by Minetto et al.65, 
which ranked third place in the xView challenge (http://xviewdataset.org/), the most advanced benchmark for 
object detection in satellite images, organized by the US Defense Innovation Unit Experimental (DIUx) and the 
National Geospatial-Intelligence Agency (NGA). The ensemble model is designed by combining two baseline 
Single Shot Multibox Detectors (SSD)55 with various data augmentation strategies adopting different scales, 
overlaps, and thresholds in order to ensure better scale invariance and detection accuracy for small vehicles. 
More technical details about the method can be found in Minetto et al.65.

Different than the reference work65, we focused particularly on the small car class and filtered the final car 
detections using a higher confidence threshold of 0.45 which we tuned by a sensitivity analysis experiment as 
follows: We took a sample of 3000 images with a total of 19,000 ground-truth car annotations and evaluated the 
car detection model’s output performance by computing Fβ score as in Eq. (1) with β = 0.5 while increasing the 
confidence threshold value from 0 to 1 with a step size of 0.05.

	
Fβ =

(
1 + β 2)

P recision × Recall

(β 2× P recision)+Recall � (1)

In this analysis, we chose β = 0.5 to put more weight on precision than recall of the model, and hence, focused on 
minimizing false-positive car detections which is critical for our use case. Supplementary Table S2 summarizes 
the performance achieved by the model in terms of Precision, Recall, and F0.5-score across varying confidence 
thresholds. The maximum F0.5-score was achieved as 0.4776 when confidence threshold was 0.45 as highlighted 
in Supplementary Fig. S15. At this threshold value, the precision and recall scores of the model were recorded as 
0.5578 and 0.3032, respectively, according to Supplementary Table S2.

Study region and areas of interest
Our study region comprised all primary administrative units, i.e., oblasts, in Ukraine, except for the occupied 
territories of Crimea and Sevastopol. Within each oblast, we selected the two most populated urban areas, in 
addition to other strategic areas located at the border checkpoints which were used as escape routes; hence, 
where humanitarian efforts could be optimized.

The selection of urban areas was based on the open-source gridded population data retrieved from WorldPop, 
which is regularly updated and curated by the WorldPop Research Group at the University of Southampton66 
(https://www.worldpop.org). For the purpose of this study, we downloaded the geospatial layer tailored 
specifically for Ukraine67. This data provides information for the latest available year (2020) at a resolution 
of 100 m, and was produced through the top-down constrained method (for more details, see Stevens et al.68 
and WorldPop69). We then aggregated the population data at the secondary administrative units, i.e., Raions 
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(districts), and ranked them within each oblast. Ultimately, we selected the cities belonging to the top-two most-
populated Raions in each oblast and manually defined a boundary area around the identified cities.

To define the strategic areas, we relied on information provided by the Humanitarian Data Exchange (HDX) 
database (https://data.humdata.org/). HDX is an open-source platform managed by the United Nations Office 
for the Coordination of Humanitarian Affairs (OCHA), providing over 20,000 datasets spanning 250 locations. 
We specifically retrieved information regarding international border crossings of Ukraine, for which the most 
up-to-date data was downloaded at the development of this study (June 2022). This dataset nevertheless does 
not specify the type of border crossing and can include categories such as railway and water crossing. In order to 
keep locations that can be only crossed by vehicles, we further intersected this data with information provided 
by the Ukrainian State Border Guard Service (https://dpsu.gov.ua/).

This process resulted in 61 areas of interest (AOI) with varying sizes, whereby each oblast included at least 
two AOIs (Fig. 1). All-together, these 61 AOIs covered a total area of 13.496 km2(see Supplementary Table S3). 
For simplicity, we will henceforth refer to each AOI as ‘city’.

Satellite imagery collection and processing
Reliable detection of small objects such as cars requires access to very-high resolution satellite images. Although 
there are a number of free satellite imagery providers (e.g., Sentinel data), they all come at the cost of coarser 
spatial resolution (> 10 m). For this reason, we used pen-sharpened natural color images from the Worldview 
and GeoEye series of satellites operated by Maxar Corp, which currently provides images at a spatial resolution 
of up to 30 cm.

Through the SecureWatch Platform (https://securewatch.maxar.com/myDigitalGlobe), we searched the 
archive for images taken between January 2019 and September 2022. We included images from the years before 
the war so that we could contrast more reliably the car dynamics before and during the war. Moreover, we started 
from January 2019 because car dynamics might have likely changed during the COVID-19 outbreak and would, 
as such, not provide a reliable baseline for comparison. The list of available satellite images was further filtered to 
retain images with (i) RGB color, (ii) less than 20% cloud coverage, and (iii) a Ground Sampling Distance (GSD) 
of at most 0.5 m (i.e., images at 0.3 m, 0.4 m, and 0.5 m resolution). Note that GSD refers to the distance between 
two consecutive pixels in an image measured on the ground. The smaller the value of GSD, the higher the spatial 
resolution of the image and the more visible the details of small objects such as cars.

After this initial search, we proceeded to download satellite imagery for each AOI, for every day (where 
available) in the above-mentioned period. For each AOI, we downloaded an image for a given day only when 
there were one or more images available covering at least 1% of the AOI’s area on that day. If there was only 
a single satellite image available for that day, we downloaded the portion of the image that covered the AOI. 
If there were more than one satellite images available on that day we downloaded a single stitched image as 
follows. The available satellite images were sorted based on area of the AOI they covered and the image covering 
the most area was downloaded first; this procedure was then repeated with the remaining images for the still-
uncovered portions of the AOI. These different image portions were then stitched together into one final image. 
We downloaded a total of 1009 daily image snapshots across all 61 AOIs. Most of these snapshots (77.7%) were 
composed of a single satellite image with the remainder being stitched from two or more images as described 
above. The bulk of the images were taken between 8 AM and 9 AM UTC (see Supplementary Fig. S16).

Data post-processing
Preliminary assessments revealed that certain images were associated to an outstanding number of car detections, 
while others only to a few or even none. Further investigation indicated that the outstanding detections were 
mostly related to false-positives. Conversely, images with zero or few detections were associated to cases in 
which the imagery was either fully obstructed by dense cloud and/or haze layers, or where it covered only a 
very small fraction of the AOI. To avoid confounding noise, hence misleading the results, we carried out three 
additional data filtering processes described as follows.

False-positive filtering
As any ML model, the car detection and classification algorithm used herein is not immune to false-positives. 
Prior investigation revealed that the CNN model detected cars at places in which their occurrences are unlikely 
or even impossible (e.g., water bodies, crop fields and forests; see Supplementary Fig. S17). To attenuate 
these misdetections, we juxtaposed the detected cars with some of the spatial attributes retrieved from the 
OpenStreetMap (OSM) database and filtered out any detection located within the unlikely areas.

OSM is a crowd-sourced database that provides physical features from all over the world70. The data is 
organized by tags, that correspond to a key-value pair describing the feature’s characteristics. Based on the 
official map attributes exposed in the Wiki OSM webpage (https://wiki.openstreetmap.org/wiki/Map features), 
we selected five primary keys to compose our standard tag: landuse, place, natural, leisure, and aeroway. Each 
key was then paired to a list of values, defining ultimately areas such as rivers, forests, farmland, parks, and 
railways. For a detailed list of the selected tags, we refer to Supplementary Table S4.

To retrieve the geospatial layers related to our list of selected tags, the osmdata R-package was used71. 
The package essentially downloads OSM data through overpass API queries, where each query runs within a 
bounding box area. In our case, we ran the query for all 61 AOIs (i.e., bounding boxes), and stored the AOI-
specific data in the format of shapefiles. Any cars detected on those layers were considered as false-positives, and 
hence, removed from our database.
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Population filtering
Most of the downloaded imagery covered only a fraction of the AOIs. In some cases, the covered fraction was 
very small and typically did not overlap with the core extent of the urban area (see Supplementary Fig. S18). 
We deemed such images as unrepresentative of the city’s core dynamics, and consequently removed them from 
the analysis. Specifically, we classified as unrepresentative any imagery covering less than 50% of the population 
distribution. For this purpose, each imagery was assigned to a distribution index, calculated as follows:

	
pi, s =

(∑
Ni, s∑
Ns

)
× 100 � (2)

where pi, s represents the population fraction covered by the imagery i relative to its AOI s, and Ni, s and Ns 
indicate the number of people within the imagery and AOI, respectively. The index ranges between 0 and 1, 
with larger values corresponding to stronger representativeness of the full population distribution. Note that 
to compute the indices, we used the same gridded population data as presented in section “Satellite imagery 
collection and processing”.

Cloud and haze filtering
Some images were associated to very low car detections (N < 10), or even none in the more extreme cases. In 
order to make reliable inferences on the car dynamics, it is imperative to distinguish false from true zeros; or, 
alternatively, low occurrences. False zeros/low occurrences are of particular concern, as they may arise from 
images obstructed by factors such as clouds, haze and pollution.

Despite the initial imagery request was limited to cases in which the cloud coverage did not exceed 20%, 
it does not warrant that the AOI will be cloud free. This is because MAXAR calculates the cloud coverage on 
the entire image tile, instead on the AOI (i.e., subset of the provided tile). Most of the zero/low occurrences 
detected in our data were due to images that were fully or partially covered by a dense cloud/haze layer. We 
therefore removed all images that were fully obstructed, while partially obstructed images were removed only if 
the cloud(s) blocked the bulk of the city. Note that for the latter aspect, images were visually inspected as there is 
no gold solution to filter cloud-obstructed images.

Data analysis
Evaluating the spatial and temporal dynamics
To investigate the potential internal migration dynamics before and during war period, we evaluated first the 
temporal car dynamics for each city whenever applicable. Data scarcity prevented the evaluation on a daily 
basis, and thus monthly average of car density were computed for all cities. Moreover, to examine regions that 
experienced an increase/decrease in the number of cars during the conflict year (2022), we calculated the change 
in average car density relative to the baseline year (i.e., 2019). To draw a country level picture, relative changes 
were calculated at the level of primary administrative units (Oblasts). For Oblasts with two or more cities, this 
means that the average car densities were further averaged across the cities.

Inferring IDPs from cars
We assumed that spatial and temporal changes in the number of cars could reflect potential migration of 
Ukrainian citizens across the country. Thus, we specifically propose to estimate war-induced IDPs from historical 
population-to-car trends incurred during the baseline year (i.e., 2019). In the absence of ground truth data, we 
used WorldPop’s gridded population data for the year 2019 to reflect more realistically the baseline population.

Overall, two distinct methods were used to estimate the relationship between pre-war population and cars. 
Specifically, we used the (i) linear ratio and (ii) regression method72, which differ in terms of complexity and 
assumptions. Whereas the ratio method assumes that the population-to-car relationship remains invariant 
through time within the given geographical area, the regression method relaxes this assumption by including 
various levels of complexity, such as non-linear and/or spatially- and temporally-dependent relationships. By 
using two distinct methods, we can provide lower and upper bound estimates, and hence, a proxy for uncertainty.

The forecasting should be ideally conducted on a daily basis, since such fine-grained estimates would be 
more relevant during the acute phase of the humanitarian crisis. However, such high temporal resolution does 
virtually not exist in the context of historical satellite imagery, and therefore, IDPs were predicted on a monthly 
basis.

We initially constructed a 1 × 1 km spatial grid for all cities through the sf R- package73. The total number of 
cars and people were then computed at the grid cell level for each city-specific satellite imagery taken in the years 
2019 (baseline year), 2020 (first COVID-19 year), and 2022 (first conflict year). We used the results from the 
first COVID-19 year to contrast with those from the conflict year and assure that the latter results were realistic 
given past trends. That is, we should expect that the population during the COVID pandemic is larger than the 
population during the war period.

To avoid any hidden and potentially misleading seasonality effect that might be induced by the extensive 
temporal gap, we identified and selected only cities presenting one or more matching months between 2019 and 
at least one of the two other years (i.e., 2020, 2022). Monthly averages of the number of cars and people were 
then computed at the grid cell level for each city and year. Next, for the reference year (i.e., 2019), we pooled 
information from all months and calculated the average number of cars and people for each city and grid cell 
therein. These averaged values were subsequently used to estimate the pre-war relationship between population 
and cars for each of the prediction methods (i.e., linear ratio and regression model). Because the extension of 
the spatial grid might differ between the considered periods (e.g., Fig. 6), we assured that all predictions were 
conducted on the matching grid cells only.
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In the ratio method, we specifically calculated the proportion of the number of people y relative to the 
number of cars x as follows:

	
rs, z =

(
ys, z

xs, z

)
� (3)

where rs, z is the population-to-car ratio for city s and grid cell z for the reference year. Certain grid cells may 
register zero cars, whereby the ratio cannot be computed. For such cases, we calculated the global median of the 
ratio and borrowed the computed value for the affected cells. The grid-level ratios from the reference year were 
then used as multiplying factor to predict the city-specific population from the average number of cars that were 
calculated for the matching months in 2020 (COVID-19) and 2022 (war).

In the regression method, in contrast, we estimated the baseline population car relationship through a 
Generalized Additive Model (GAM), as prior examination indicated an asymptotic trend when plotting the 
two variables irrespective of the grid cell index. Unlike the ratio method, GAMs are a class of statistical models 
in which the uncertainty can be retrieved in both estimation and prediction phase. These models constitute a 
powerful extension of GLMs (Generalized Linear Models), whereby the linearity assumption of the predictor(s) 
can be relaxed through smoothing functions74.

Similar to GLMs, the response variable Y (herein no. of people) follows a probability distribution from the 
exponential family (herein Poisson), with the mean µ = E(Y ) linked to an additive non-parametric predictor 
η (herein no. of cars) through a link function g(.), such that g(µ) = E(η). For a given city, and month-year, the 
model can be thus simplified as:

	 Yi = exp (β 0 + f (Xi) + ϵ i) � (4)

where β 0 is the intercept (i.e., global average of cars), f (.) the cubic spline function, ε the error term, and i the 
grid cell index.

All GAM models were fitted through the mgcv R-package75, and model assumptions checked visually 
through the mgcViz package76. The parameters from the fitted models were ultimately used to predict the grid-
level population for the matching months in 2020 and 2022 based on their average number of cars, akin to the 
ratio method.

For both approaches we calculated the change in population size relative to the baseline population. 
Computations were performed on both grid-cell and global level, where the latter was calculated by summing 
up the grid-level populations.

Understanding the effect of imagery features on car detection
It is paramount to understand the influence of imagery-related characteristics on the CNN’s model capacity 
to detect cars, as it influences the IDP estimates. Cloud obstruction, sun elevation and off-Nadir angles, for 
example, can influence the geometry of the image and hence accuracy of the object detection77,78. Thus, to 
examine the overall effect of these features on car detection, we conducted a Generalized Linear Model (GLM) 
through the stats R-package. The number of cars were standardized by the area of the given imagery (i.e., car 
density), log-transformed, and modelled via a Gaussian probability distribution. Among the imagery features, 
we evaluated the effect of image resolution (categorical), off-Nadir angle (numeric), sun elevation (numeric), 
cloud coverage (numeric), and presence of snow (categorical). Model assumptions were visually assessed to 
evaluate the residuals’ normality, homoscedasticity and independence.

Our results revealed that all tested covariates significantly affected the car detection, except the cloud coverage 
(Table  1). Higher image resolution was generally associated with higher densities of detected cars (Table  1; 
Fig. 7a and Supplementary Fig. S19). The presence of snow was negatively related to car densities, meaning that 
a higher number of detected cars tended to be associated with non-snowy days (Table 1; Fig. 7b). Supplementary 
Figure S20 shows an example of the impact of snow on car detection, reducing the contrast between cars and 
their surroundings, making it more difficult for the model to discern cars in the image.

The off-nadir and sun elevation angles had an antagonic effect on car detection, both of which were directly 
related to the occlusion of important infrastructure such as roads and parking lots by buildings or their shadows, 
and thus, affecting car detectability (Supplementary Figs. S21 and S22). Whereas car densities were larger at 

Parameters Estimate 2.5% 97.5% t-value P-value

Intercept 3.44 2.85 4.02 11.55 < 0.05

Image resolution − 0.4 − 1.05 − 1.37 − 0.73 − 6.45 < 0.05

Image resolution − 0.5 − 1.90 − 2.20 − 1.61 − 12.59 < 0.05

Snow presence - Yes − 1.67 − 2.16 − 1.18 − 6.72 < 0.05

Off-Nadir − 0.03 − 0.05 − 0.02 − 3.99 < 0.05

Sun elevation 0.02 0.01 0.03 4.49 < 0.05

Cloud coverage − 1.74 − 4.55 1.07 − 1.22 0.225

Table 1.  Statistical summary of the generalized Linear Model (GLM) conducted to test for the effect of 
imagery-related features on car density. Estimated parameters are on a log-scale and include the 95% 
confidence interval, t-values, and P-values expressed at 5% of level of significance.
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smaller off-nadir angles and with maximum detectability around 25° (Table 1; Fig. 7c), car densities were higher 
towards larger sun elevation angles (Table 1; Fig. 7d).

Surprisingly, no significant impact from cloud obstruction could be detected from the present data. Although 
lower car densities seemed to be associated to images that were more heavily obstructed by clouds (Fig. 7e), 
the overall effect was not statistically significant (Table 1). It is noteworthy that all model assumptions were 
reasonably met, i.e., residual normality, homoscedasticity and independence. We refer to Supplementary Figure 
S23 for a visual overview of the model’s diagnostics.

Data availability
All data and codes underlying the findings of the present study are available on the first author’s GitHub repos-
itory (https://github.com/mcruf/IDP_UKR). We nevertheless note that the original Maxar satellite images ​c​a​n​n​
o​t be openly shared due to confidentiality reasons. These can, however, be made available from the first author 
upon prior permission from Maxar.
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