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Matching markets play a prominent role in economic theory. A prime example of such a
market is the sponsored search market. Here, as in other markets of that kind, market
equilibria correspond to feasible, envy free, and bidder optimal outcomes. For settings
without budgets such an outcome always exists and can be computed in polynomial-
time by the so-called Hungarian Method. Moreover, every mechanism that computes
such an outcome is incentive compatible. We show that the Hungarian Method can be
modified so that it finds a feasible, envy free, and bidder optimal outcome for settings with
budgets. We also show that in settings with budgets no mechanism that computes such an
outcome can be incentive compatible for all inputs. For inputs in general position, however,
the presented mechanism—as any other mechanism that computes such an outcome for
settings with budgets—is incentive compatible.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In a matching market n bidders have to be matched to
k items. A prime example of such a market is the spon-
sored search market, where bidders correspond to adver-
tisers and items correspond to ad slots. In this market
each bidder has a per-click valuation vi , each item j has a
click-through rate α j , and bidder i’s valuation for item j is
vi, j = α j · vi . More generally, each bidder i has a valuation
vi, j for each item j. In addition, each item j has a reserve
price r j . A mechanism is used to compute an outcome
(μ, p) consisting of a matching μ and per-item prices p j .
The bidders have quasi-linear utilities. That is, bidder i’s
utility is ui = 0 if he is unmatched and it is ui = vi, j − p j

if he is matched to item j at price p j . The valuations are
private information and the bidders need not report their
true valuations if it is not in their best interest to do so.

✩ A preliminary version of this paper appeared in Dütting et al.
(2010) [1].
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Ideally, the market should be in equilibrium. In the con-
text of matching markets this typically means that the
outcome computed by the mechanism should be feasible,
envy free, and bidder optimal. An outcome is feasible if all
bidders have non-negative utilities and if the price of all
matched items is at least the reserve price. It is envy free
if it is feasible and if at the current prices no bidder would
get a higher utility if he was assigned a different item. It is
bidder optimal if it is envy free and if the utility of every
bidder is at least as high as in every other envy free out-
come. Another requirement is that the mechanism should
be incentive compatible. A mechanism is incentive com-
patible if each bidder maximizes his utility by reporting
truthfully no matter what the other bidders report.

For matching markets of the above form a bidder opti-
mal outcome always exists [2], can be computed in poly-
nomial time by the so-called Hungarian Method [3], and
every mechanism that computes such an outcome is in-
centive compatible [4]. The above model, however, ignores
the fact that in practice bidders often have budgets. Con-
crete examples include Google’s and Yahoo’s ad auction.
Budgets are also challenging theoretically as they lead to
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discontinuous utility functions and thus break with the
quasi-linearity of the original model without budgets.

In our model each bidder can specify a maximum price
for each item. If bidder i specifies a maximum price of mi, j
for item j, then he cannot pay any price p j � mi, j . Hence
the utility of bidder i is ui = 0 if he is unmatched, it is
ui = vi, j − p j if he is matched to item j at price p j < mi, j

(strict inequality), and it is ui = −∞ otherwise.1 As be-
fore an outcome is feasible if all bidders have non-negative
utilities and if the price of all matched items is at least the
reserve price. It is envy free if it is feasible and if at the
current prices no bidder would get a higher utility if he
was assigned a different item. It is bidder optimal if it is
envy free and if the utility of every bidder is at least as
high as in every other envy free outcome.

For this model we show that the Hungarian Method
can be modified so that it always finds a bidder optimal
outcome in polynomial time. We also show that no mech-
anism that computes such an outcome is incentive com-
patible for all inputs. For inputs in general position, i.e.,
inputs with the property that in a certain weighted multi-
graph defined on the basis of the input no two walks have
exactly the same weight, our mechanism—as any other
mechanism that computes a bidder optimal outcome—is
incentive compatible [5]. All our results can be extended
to more general (but still linear) utility functions.

A similar problem was previously considered by [6].
Their model differs from our model in several ways:
(1) The utility ui of bidder i is ui = 0 if he is unmatched,
it is ui = vi, j − p j if he is matched to item j at price
p j � mi, j (weak inequality), and it is ui = −∞ otherwise.
(2) The reserve prices ri, j may depend on the bidders and
the items. (3) An outcome is envy free if it is feasible and
if for all bidders i and all items j either (a) ui � vi, j −
max(p j, ri, j) or (b) p j � mi, j . For these definitions they
showed that for inputs in general position (a) a bidder op-
timal outcome always exists, (b) a bidder optimal outcome
can be computed by a (rather complicated) mechanism in
polynomial time, and (c) this mechanism is incentive com-
patible. For inputs that are not in general position a bidder
optimal outcome may not exist as the following example
shows.2,3

1 While requiring p j � mi, j seems to be more intuitive, it has the dis-
advantage that the infimum envy prices may not be envy free themselves:
There are three bidders and one item. All bidders have a valuation of 10
and the first two bidders have a maximum price of 5. Then any price
p � 5 is not envy free because all bidders would prefer to be matched,
and any price p > 5 is not bidder optimal because a slightly lower price
would still be envy free.

2 An input is in general position if in the weighted, directed, and bi-
partite multigraph with one node per bidder i, one node per item j, and
one node for the dummy item j0 and forward edges from i to j with
weight −vi, j , backward edges from j to i with weight vi, j , reserve-price
edges from i to j with weight vi, j − ri, j , maximum-price edges from i to
j with weight mi, j − vi, j , and terminal edges from i to j0 with weight 0
no two walks that start with the same bidder, alternate between forward
and backward edges, and end with a distinct edge that is either a reserve-
price edge, a maximum-price edge, or a terminal edge have the same
weight.

3 The example is not in general position because the walk that consists
of the maximum-price edge from bidder 1 to item 1 and the walk that
consists of the forward edge from bidder 1 to item 1, the backward edge
from item 1 to bidder 2, and the maximum-price edge from bidder 2 to
item 1 have the same weight.
Fig. 1. Bidders are on the left side and items are on the right side of the
graphs. The numbers next to the bidder indicate his utility, the numbers
next to the item indicate its price. The labels along the edge show val-
uations and maximum prices. Matched edges are bold, while unmatched
edges are thin.

Example 1. There are two bidders and one item. The val-
uations and maximum prices are as follows: v1,1 = 10,
v2,1 = 10, and m1,1 = m2,1 = 5. While μ = {(1,1)} with
p1 = 5 is “best” for bidder 1, μ = {(2,1)} with p1 = 5 is
“best” for bidder 2. With our definitions a bidder optimal
outcome is μ = ∅ with p1 = 5. See Fig. 1.

The sponsored search market was considered by [7],
who proved the existence of a unique feasible, envy free,
and Pareto efficient outcome. They also presented an in-
centive compatible mechanism to compute such an out-
come in polynomial time. Their model, however, is less
general than the model studied here as (1) the valuations
must be of the form vi, j = α j · vi , and (2) the maximum
prices are per-bidder, i.e., for each bidder i there exists mi
such that mi, j = mi for all j, and are required to be dis-
tinct.

Matching markets with more general, non-linear util-
ity functions were studied in [8,9,5]. In [8] we proved
the existence of a bidder optimal outcome for general
utility functions with multiple discontinuities. In [9] a
polynomial-time mechanism for consistent utility functions
with a single discontinuity was given. In [5] we presented
a polynomial-time mechanism for piece-wise linear utility
functions with multiple discontinuities.

To summarize: (1) We show how to modify the Hun-
garian Method in settings with budgets so that it finds a
bidder optimal outcome in polynomial time. (2) We show
that in settings with budgets no mechanism that computes
a bidder optimal outcome can be incentive compatible for
all inputs. (3) We show how to extend these results to
more general (but still linear) utility functions.

2. Problem statement

We are given a set I of n bidders and a set J of k items.
We use letter i to denote a bidder and letter j to denote
an item. For each bidder i and item j we are given a val-
uation vi, j , for each item j we are given a reserve price r j ,
and for each bidder i and item j we are given a maxi-
mum price mi, j . We assume that the set of items contains
a dummy item j0 for which all bidders have a valuation of
zero, a reserve price of zero, and a maximum price of ∞.4

We want to compute an outcome (μ, p) consisting of a
matching μ ⊆ I × J and per-item prices p = (p1, . . . , pk).

We require that (a) every bidder i appears in exactly one
bidder-item pair (i, j) ∈ μ and that (b) every non-dummy

4 Reserve utilities, or outside options oi , can be modelled by setting
vi, j0 = oi for all i.
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item j �= j0 appears in at most one such pair. We allow
the dummy item j0 to appear more than once. We call
bidders/items that are not matched to any non-dummy
item/bidder unmatched. We regard the dummy item as un-
matched, regardless of whether it is matched or not.

The utility ui of bidder i is defined as ui = 0 if bidder i
is unmatched and it is defined as ui = ui, j(p j) if bidder i is
matched to item j at price p j . We set ui, j(p j) = vi, j − p j if
p j < mi, j and ui, j(p j) = −∞ if p j � mi, j . We say that the
outcome (μ, p) is feasible if (1) ui � 0 for all i, (2) p j0 = 0
and p j � 0 for all j �= j0, and (3) p j � r j for all (i, j) ∈ μ.
We say that a feasible outcome (μ, p) is envy free if ui �
ui, j(p j) for all (i, j) ∈ I × J .5 Finally, we say that an envy
free outcome (μ, p) is bidder optimal if ui � u′

i for all i and
envy free outcomes (μ′, p′).

We say that a mechanism is incentive compatible if
for every bidder i, any two inputs (v ′

i, j(·), r j,m′
i, j) and

(v ′′
i, j(·), r j,m′′

i, j) with (a) v ′
i, j = vi, j and m′

i, j = mi, j for i

and all j and (b) v ′
k, j = v ′′

k, j and m′
k, j = m′′

k, j for k �= i and
all j, and corresponding outcomes (μ′, p′) and (μ′′, p′′)
we have that ui, j′ (p′

j′ ) � ui, j′′(p′′
j′′ ) where (i, j′) ∈ μ′ and

(i, j′′) ∈ μ′′ . This formalizes that “lying does not pay off”
as follows: Even if bidder i claims that his valuation is v ′′

i, j

instead of vi, j and that his maximum price is m′′
i, j instead

of mi, j he will not achieve a higher utility with the prices
and the matching computed by the mechanism.

3. Preliminaries

We define the first choice graph G p = (I ∪ J , F p) at prices
p as follows: There is one node per bidder i, one node
per item j, and an edge from i to j if and only if item j
gives bidder i the highest utility, i.e., ui, j(p j) � ui, j′ (p j′ )
for all j′. For i ∈ I we define F p(i) = { j: ∃(i, j) ∈ F p} and
for j ∈ J we define F p( j) = {i: ∃(i, j) ∈ F p}. Analogously,
for T ⊆ I we define F p(T ) = ⋃

i∈T F p(i) and for S ⊆ J we
define F p(S) = ⋃

j∈S F p( j).

Fact 1. For all prices p such that p j0 = 0 and p j � 0 for all
j �= j0 we have that (1) if (i, j) ∈ F p then p j < mi, j , and
(2) if the outcome (μ, p) is envy free then μ ⊆ F p .

We define the feasible first choice graph G̃ p = (I ∪ J , F̃ p)

at prices p as follows: There is one node per bidder
i, one node per item j, and an edge from i to j if
and only if item j gives bidder i the highest utility, i.e.,
ui, j(p j) � ui, j′ (p j′ ) for all j′ , and the price of item j is
at least the reserve price, i.e., p j � r j . For i ∈ I we define
F̃ p(i) = { j: ∃(i, j) ∈ F̃ p} and for j ∈ J we define F̃ p( j) =
{i: ∃(i, j) ∈ F̃ p}. Analogously, for T ⊆ I we define F̃ p(T ) =
⋃

i∈T F̃ p(i) and for S ⊆ J we define F̃ p(S) = ⋃
j∈S F̃ p(i).

Fact 2. For all prices p such that p j0 = 0 and p j � 0 for
all j �= j0 we have that (1) if (i, j) ∈ F̃ p then r j � p j <

mi, j , and (2) the outcome (μ, p) is envy free if and only if
μ ⊆ F̃ p .

5 Since ui � 0 and ui, j(p j) = −∞ if p j � mi, j this is equivalent to re-
quiring ui � vi, j − p j for all items j with p j < mi, j .
Fig. 2. The bidders are i1–i6 and the items are j0– j5. Edges in F̃ p ∩μ are
thick, edges in F̃ p are thin, and edges in F p \ F̃ p are dashed. The (feasible)
first choice graph is on the left and the maximal alternating tree is on the
right.

We define an alternating path as a sequence of edges in
F̃ p that alternates between matched and unmatched edges.
We require that all but the last item on the path are non-
dummy items. The last item can (but does not have to) be
the dummy item. A tree in the feasible first choice graph
G̃ p is an alternating tree rooted at bidder i if all paths from
its root to a leaf are alternating paths that either end with
the dummy item, an unmatched item, or a bidder whose
feasible first choice items are all contained in the tree. We
say that an alternating tree with root i is maximal if it can-
not be extended.

Example 2. This is a (feasible) first choice graph and a
maximal alternating tree for six bidders and six items. See
Fig. 2.

4. Mechanism

Our mechanism starts with an empty matching and
prices all zero. To match an unmatched bidder it com-
putes a maximal alternating tree rooted at this bidder.
If at least one of the alternating paths in this tree ends
at an unmatched item, then it augments the matching
by swapping the matched and unmatched edges along
this path. Otherwise it raises the prices of all items that
are the first choice of at least one bidder in the tree by
δ = min(δout, δres, δmax), where (a) δout is the minimum
amount required to add an edge from a bidder in the tree
to an item that was not among his first choice items to
the first choice graph, (b) δres is the minimum amount
required to turn an infeasible first choice edge that is inci-
dent to a bidder in the tree into a feasible first choice edge,
and (c) δmax is the minimum amount required to make a
first choice edge that is incident to a bidder in the tree
drop out of the first choice graph.6

While updates corresponding to δmax can cause previ-
ously matched bidders to become unmatched, neither up-
dates corresponding to δout nor updates corresponding to
δres will ever unmatch previously matched bidders: They
preserve all feasible first choice edges that are incident
to bidders in the tree, and thus the feasible first choice
edges along which these bidders are matched. They may
cause first choice edges from bidders not in the tree to first
choice items of bidders in the tree to drop put of the first
choice graph, but none of these bidders will be matched

6 For δmax to be well defined we need that the utility that bidder i
has for item j is defined with p j < mi, j (weak inequality), and not with
p j � mi, j (weak inequality).
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along such an edge (because otherwise the corresponding
bidder would belong to the tree).7

Modified Hungarian Method.

input: valuations vi, j , reserve prices r j , maximum prices mi, j

output: bidder optimal outcome (μ, p)

1 p j := 0 for all j ∈ J , ui := max j vi, j for all i ∈ I , and μ := ∅
2 while there exists an unmatched bidder i0 do
3 find maximal alternating tree rooted at bidder i0 in G̃ p

4 let T and S be the set of bidders and items in this tree
5 set ui := max j ui, j(p j) for all i ∈ T
6 while all items j ∈ S are matched and j0 /∈ S do
7 compute δ := min(δout, δres, δmax) where
8 δout := mini∈T , j∈ J\F p (i)(ui + p j − vi, j)

9 δres := min j∈F p (T )\ F̃ p (T )
(r j − p j)

10 δmax := mini∈T , j∈F p (i)(mi, j − p j)

11 update prices, utilities, and matching as follows
12 p j := p j + δ for all j ∈ F p(T ) \\ leads to new graph
13 ui := max j ui, j(p j) for all i ∈ T
14 μ := μ ∩ F̃ p \\ removes unfeasible edges
15 find maximal alternating tree rooted at bidder i0 in G̃ p

16 let T and S be the set of bidders and items in this tree
17 set ui := max j ui, j(p j) for all i ∈ T
18 end while
19 augment μ along alternating path rooted at i0 in G̃ p

20 end while
21 output μ and p

5. Feasibility and envy freeness

Theorem 1. The Modified Hungarian Method finds a feasible
and envy free outcome. It can be implemented to run in time
O (n · k3).

Proof. Since the outcome (μ, p) maintained by the Modi-
fied Hungarian Method satisfies p j0 = 0 and p j � 0 for all
j �= j0 and μ ⊆ F̃ p at all times it suffices to show that after
O (n ·k3) steps all bidders are matched. The prices, the util-
ities, and the matching can be initialized in time O (n · k)

(l. 1). To analyze the remaining running time we divide it
into the total time spent in (1) the outer while loop with-
out the inner while loop (ll. 2–5 and 19–20) and (2) the
inner while loop (ll. 6–18).

To (1): We have that (a) after each execution of the
outer while loop a previously unmatched bidder gets
matched and (b) a matched bidder i can only become un-
matched if the price of the item j he is matched to reaches
mi, j . Since there are O (n) many bidders and (b) can hap-
pen at most O (n · k) times (a) and (b) show that after
O (n · k) executions of the outer while loop all bidders are
matched. The maximal alternating tree, the utilities of the
bidders in the tree, and the augmenting path can be com-
puted via breadth-first search: Start with T = S = ∅. Add
bidder i0 to T . Compute the utility of the bidders added
to T , determine their feasible first choice items, and add
these items to S . This takes time O (k) per bidder. For each
non-dummy item added to S add to T the bidder that this
item is matched to. This takes time O (k) per item. Con-
tinue like this until no more bidders resp. items are added

7 This is not true if the reserve prices are allowed to depend on the bid-
ders and the items and the prices are updated as in [1]. See Appendix A
for a counter example.
to T resp. S . Overall this procedure takes at most O (k2)

steps because at most O (k) bidders resp. items are added
to T resp. S . We conclude that the total running time of
the outer while loop is O (n · k3).

To (2): We say that an iteration of the inner while loop
is special if (a) right before the iteration of the inner while
loop the outer while loop was executed, (b) in the previ-
ous iteration of the inner while loop a reserve price was
reached, or (c) in the previous iteration of the inner while
loop a maximum price was reached. Since (a)–(c) can hap-
pen at most O (n ·k) times the number of special iterations
is O (n · k). We show next how a sequence consisting of a
special iteration and all non-special iterations that follow
it can be implemented in time O (k2). Since there are at
most O (n · k) special iterations this shows that the total
running time of the inner while loop is O (n · k3).

The implementation keeps track of ui for all i ∈ T ,
p j for all j ∈ F p(T ), the matching μ, and the sets T and S .
In addition, it keeps track of the following slack variables,
which have to be initialized at the beginning of the first
iteration:

γ out
j = min

i∈T
(ui + p j − vi, j) for j ∈ J \ F p(T ),

γ res
j = r j − p j for j ∈ F p(T ) \ F̃ p(T ),

γ max
j = min

i∈T
(mi, j − p j) for j ∈ F p(T ).

Since there are at most O (k) items in J and at most
O (k) bidders in T initializing the slack variables takes time
O (k2). Since δout, δres, and δmax are the minima over the
corresponding slack variables the slack variables can be
used to compute δ in time O (k).

We begin by showing how to update the data in all it-
erations in the sequence with δ = δout. We update the util-
ities ui of all bidders i ∈ T by subtracting δ in time O (k).

We update the prices of all items j ∈ F p(T ) by adding δ

in time O (k). We do not have to update the matching. We
update the maximal alternating tree and the utilities of the
bidders that are added to the tree as follows: We first add
all items that are added to F̃ p(T ) to S . Since these are
precisely the items for which δ = γ out

j and p j � r j we can
find these items in time O (k). For each non-dummy item
added to S we add to T the bidder that this item was
matched to. This takes time O (k) per item. Afterwards we
update the utilities of the bidders added to T and add their
feasible first choice items to S (in time O (k) per bidder)
and for each non-dummy item added to S we add to T
the bidder that this item was matched to (in time O (k)

per item). We continue like this until no more bidders
resp. items are added to T resp. S . Let T and S resp. T ′
and S ′ denote the sets of bidders and items before resp. af-
ter the update. Then overall this procedure takes at most
O (k + |T ′ \ T | · k + |S ′ \ S| · k) steps.

We update the slack variables as follows. Let p and
p′ denote the prices before and after the update. For j ∈
J \ F p(T ) and j ∈ J \ F p′ (T ′) we set γ out

j = min(γ out
j − δ,

mini∈T ′\T (ui + p′
j − vi, j)). This takes time O (|T ′ \ T |)

per item. For j ∈ J \ F p(T ) and j ∈ F p′ (T ′) we remove
γ out

j . If j ∈ F p′ (T ′) \ F̃ p′ (T ′) we add γ res
j = r j − p′

j and

γ max = mini∈T ′(mi, j − p′ ). Otherwise, if j ∈ F̃ p′ (T ′) we
j j
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only add γ max
j = mini∈T ′(mi, j − p′

j). Removing γ out
j takes

time O (1) per item, adding γ res
j takes time O (1) per item,

and adding γ max
j takes time O (k) per item. For j ∈ F p(T ) \

F̃ p(T ) and j ∈ F p′ (T ′) \ F̃ p′ (T ′) we update γ res
j = γ res

j − δ

and γ max
j = min(γ max

j − δ,mini∈T ′\T (mi, j − p′
j)). For j ∈

F̃ p(T ) and j ∈ F̃ p′ (T ′) we update γ max
j = min(γ max

j − δ,

mini∈T ′\T (mi, j − p′
j)). In both cases, updating γ res

j takes
time O (1) per item and updating γ max

j takes time
O (|T ′ \ T |) per item.

Since in a sequence of iterations with δ = δout (a) every
iteration adds at least one item to F p(T ), (b) every item
can move from J \ F p(T ) to F p(T ) at most once, and (c) at
most O (k) bidders resp. items are added to T resp. S we
conclude that updating the data in all iterations in the se-
quence with δ = δout takes time O (k2).

We conclude by showing how to update the data in
iterations corresponding to δ = δres or δ = δmax in time
O (k2). The utilities ui of all bidders i ∈ T can be updated
in time O (k) per bidder by setting ui = max j ui, j(p j). The
prices p j of all items j ∈ F p(T ) can be updated in time
O (1) per item by adding δ. The matching μ can be up-
dated in time O (k) by removing edges (i, j) for which the
new price of item j exceeds mi, j . The maximal alternating
tree and the utilities of the bidders in the tree can be com-
puted from scratch in time O (k2) via breadth-first search
(as in the outer while loop). �
6. Bidder optimality

Theorem 2. The Modified Hungarian Method finds a bidder op-
timal outcome.

We proceed as follows: In Lemma 1 we show that an
envy free outcome (μ, p) is bidder optimal if we have
that p j � p′

j for all items j and all envy free outcomes
(μ′, p′). Afterwards, we define strict overdemand and prove
a lower bound on the price increase of strictly overde-
manded items in Lemma 2. Finally, in Lemma 3, we argue
that whenever the Modified Hungarian Method updates
the prices it updates the prices according to Lemma 2. This
completes the proof.

Lemma 1. If the outcome (μ, p) is envy free and p j � p′
j for

all j and all envy free outcomes (μ′, p′), then the outcome
(μ, p) is bidder optimal.

Proof. For a contradiction suppose that there exists an
envy free outcome (μ′, p′) such that u′

i > ui for some bid-
der i. Let j be the item that bidder i is matched to in μ
and let j′ be the item that bidder i is matched to in μ′ .
Since p j′ � p′

j′ and p′
j′ < mi, j′ we have that ui, j′ (p j′ ) =

vi, j′ − p j′ . Since the outcome (μ, p) is envy free we have
that ui = ui, j(p j) = vi, j − p j � ui, j′ (p j′ ) = vi, j′ − p j′ . It fol-
lows that u′

i = vi, j′ − p′
j′ > ui = vi, j − p j � vi, j′ − p j′ and,

thus, p′
j′ < p j′ . This gives a contradiction. �

We say that a (possibly empty) set S ⊆ J \ { j0} is
strictly overdemanded for prices p with respect to T ⊆ I if
(i) F̃ p(T ) ⊆ S and (ii) ∀R ⊆ S and R �= ∅: | F̃ p(R) ∩ T | > |R|.
Using Hall’s Theorem [10] one can show that an envy free
outcome exists for given prices p such that p j0 = 0 and
p j � 0 for all j �= j0 if and only if there is no strictly
overdemanded set of items S in the feasible first choice
graph G̃ p .

Lemma 2. Given p such that p j0 = 0 and p j � 0 for all j �= j0
let ui = max j ui, j(p j) for all i. Suppose that S ⊆ J \ { j0} is
strictly overdemanded for prices p with respect to T ⊆ I and let
δ = min(δout, δres, δmax), where

δout = min
i∈T , j∈ J\F p(i)

(ui + p j − vi, j), and

δres = min
i∈T , j∈F p(i)\ F̃ p(i)

(r j − p j), and

δmax = min
i∈T , j∈F p(i)

(mi, j − p j).

Then, for every envy free outcome (μ′, p′) with p′
j � p j for all j,

we have that p′
j � p j + δ for all j ∈ F p(T ).

Proof. We prove the claim in two steps. In the first step,
we show that p′

j � p j + δ for all j ∈ F̃ p(T ). In the second

step, we show that p′
j � p j + δ for all j ∈ F p(T ) \ F̃ p(T ).

Step 1. Consider the set of items A = { j ∈ F̃ p(T ) | ∀k ∈
F̃ p(T ): p′

j − p j � p′
k − pk} ⊆ S and the set of bidders

B = F̃ p(A) ∩ T ⊆ T . If A = ∅ then there is nothing to
show. If A �= ∅ then assume by contradiction that δ′ =
min j∈ F̃ p(T )

(p′
j − p j) < δ. We show below that in this case

|B| > |A| and A ⊇ F̃ p′ (B). On the one hand this shows that
|A| � | F̃ p′(B)| and, thus, |B| > | F̃ p′(B)|. On the other hand
this shows that F̃ p′ (B) ⊆ A ⊆ S ⊆ J \ { j0}, i.e., F̃ p′ (B) does
not contain the dummy item. But if F̃ p′ (B) does not con-
tain the dummy item then the outcome (μ′, p′) can only
be envy free if every bidder in B is matched to a distinct
item in F̃ p′ (B) and, thus, |B| � | F̃ p′(B)|. This gives a con-
tradiction.

The set of items S is strictly overdemanded for prices p
with respect to T . Thus, since A ⊆ S and A �= ∅, we have
|B| = | F̃ p(A) ∩ T | > |A|. Next we show that A ⊇ F̃ p′ (B). It
suffices to show that F̃ p′ (i) \ A = ∅ for all bidders i ∈ B.

For a contradiction suppose that there exist a bidder i ∈ B
and an item k ∈ F̃ p′ (i) \ A. It follows that (1) ui,k(p′

k) � 0,
(2) ui,k(p′

k) � ui,k′ (p′
k′ ) for all k′ , and (3) p′

k � rk. In partic-
ular, rk � p′

k < mi,k and so ui,k(p′
k) = vi,k − p′

k. We also

know that there exists j ∈ A such that j ∈ F̃ p(i). Since
j ∈ A we have that p′

j < p j + δ � p j + δmax � mi, j and

so ui, j(p′
j) = vi, j − p′

j . Thus, since k ∈ F̃ p′ (i), vi,k − p′
k �

vi, j − p′
j . Finally, since j ∈ F̃ p(i) and pk � p′

k < mi,k , we
also have that ui, j(p j) = vi, j − p j � ui,k(pk) = vi,k − pk .
We distinguish three cases:

Case 1: k ∈ J \ F p(B). Since δ � δout � ui + pk − vi,k and
ui = vi, j − p j we have that δ � vi, j − p j + pk − vi,k. Re-
arranging this shows that vi,k − pk + δ � vi, j − p j . Since
p′

k � pk and p j > p′
j − δ this implies that vi,k − p′

k <

vi, j − p′ . Contradiction!
j
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Case 2: k ∈ F p(B) \ F̃ p(B). We have δ � δres � rk − pk. If
p′

k − pk � p′
j − p j , then, since p′

j − p j = δ′ < δ, we have that
p′

k < pk + δ � rk . Contradiction! If p′
k − pk > p′

j − p j , then,
since vi, j − p j � vi,k − pk , we get that vi, j − p′

j > vi,k − p′
k .

Contradiction!
Case 3: k ∈ F̃ p(B) \ A. Since j ∈ A and k /∈ A we have

that p′
k − pk > δ′ = p′

j − p j . Since vi, j − p j � vi,k − pk this
implies that vi, j − p′

j > vi,k − p′
k . Contradiction!

Step 2. Consider an arbitrary item j ∈ F p(T )\ F̃ p(T ) such
that p′

j − p j � p′
j′ − p j′ for all j′ ∈ F p(T )\ F̃ p(T ) and a bid-

der i ∈ T such that j ∈ F p(i). Assume by contradiction that
δ′ = p′

j − p j < δ. We show that this implies that F̃ p′ (i) = ∅,
which gives a contradiction to the fact that the outcome
(μ′, p′) is envy free.

First observe that δ′ < δ � δres � r j − p j and, thus, p′
j <

p j + δ � r j , which shows that j /∈ F̃ p′ (i). Next consider an
arbitrary item k �= j. For a contradiction suppose that k ∈
F̃ p′ (i). It follows that rk � p′

k < mi,k and ui,k(p′
k) = vi,k −

p′
k � ui, j(p′

j). Since p′
j = p j + δ′ < p j + δ � p j + δmax �

mi, j we have that ui, j(p′
j) = vi, j − p′

j and, thus, vi,k − p′
k �

vi, j − p′
j . Finally, since j ∈ F p(i) and pk � p′

k < mi,k , we
have that ui, j(p j) = vi, j − p j � ui,k(pk) = vi,k − pk .

As in Step 1 we distinguish three cases: If k ∈ J \ F p(T )

or k ∈ F p(T ) \ F̃ p(T ), then by the same argument as in
Cases 1 and 2 above we get a contradiction. If k ∈ F̃ p(T ),
then from the result of Step 1 we know that p′

k − pk � δ >

δ′ = p′
j − p j . Since vi, j − p j � vi,k − pk this implies that

vi, j − p′
j > vi,k − p′

k , which also gives a contradiction. �
Lemma 3. Let p be the prices computed by the Modified Hun-
garian Method. Then for every envy free outcome (μ′, p′) we
have that p j � p′

j for all j.

Proof. We prove the claim by induction over the price up-
dates. Let pt denote the prices after the t-th price update.

For t = 0 the claim follows from the fact that pt
j = 0 for

all j and p′
j � 0 for all j and feasible outcomes (μ′, p′).

For t > 0 assume that the claim is true for t − 1. Let
S ⊆ J \ { j0} be the set of items and let T be the set
of bidders considered by the Modified Hungarian Method
for the t-th price update. We claim that S ⊆ J \ { j0} is
strictly overdemanded for prices pt−1 with respect to T .

This is true because: (1) S and T are defined as the set
of items resp. bidders in a maximal alternating tree and,
thus, there are no edges in F̃ pt−1 from bidders in T to

items in J \ S which shows that F̃ pt−1 (T ) ⊆ S. (2) Be-
cause for every subset R ⊆ S with R �= ∅ all items in R are
matched the number of “neighbors” that these items have
in the maximal alternating tree is strictly larger than |R|,
i.e., | F̃ pt−1(R) ∩ T | > |R|. Since pt−1 � 0 for all j ∈ J and

pt−1
j0

= 0 and, by the induction hypothesis, p′
j � pt−1

j for

all j ∈ J Lemma 2 shows that p′
j � pt−1

j + δ for all items

j ∈ F pt−1 (T ). The Modified Hungarian Method sets pt
j =

pt−1
j + δ for all items j ∈ F pt−1 (T ) and pt

j = pt−1
j for all

items j /∈ F pt−1 (T ). We conclude that p′
j � pt

j for all items
j ∈ J . �
Fig. 3. Bidders are on the left side and items are on the right side of the
graphs. The numbers next to the bidders indicate their utilities. The num-
bers next to the items indicate their prices. The labels along the edges
show valuations and maximum prices. The graph on the left depicts the
bidder optimal outcome for the “true” valuations. The graph on the right
depicts the bidder optimal outcome for the “falsified” valuations. Specif-
ically, in the graph on the right bidder 2 misreports his valuation for
item 1. This gives him a strictly higher utility, and shows that lying “pays
off”.

7. Incentive compatibility

The following example shows that no mechanism that
computes a bidder optimal outcome is incentive compati-
ble for all inputs. In subsequent work we show that every
mechanism that computes a bidder optimal outcome is in-
centive compatible for inputs in general position [5]. Thus,
our mechanism—just as the mechanism of [6]—is incentive
compatible for inputs in general position. Note that the ex-
ample shows that a bidder can improve his utility by lying
only about the valuation of a single item. Also note that
(i) there are no reserve prices, i.e., r j = 0 for all j, (ii) the
maximum prices depend only on the item, i.e., for all i
there exists a constant mi such that mi, j = mi for all j,
and (iii) no two bidders have the same maximum price,
i.e., mi �= mk for any two bidders i �= k.

Example 3. There are three bidders and three items. The
valuations are v1,1 = 6, v1,2 = 5, v2,1 = 11, v2,2 = 5,
v2,3 = 4, v3,2 = 10, and v3,3 = 4. The maximum prices are
m1 = 6, m2 = 4, and m3 = 3. Reserve prices are zero. See
Fig. 3.

8. Generalized linear utility functions

The following theorem generalizes our results to utili-
ties of the form ui, j(p j) = vi, j − ci · c j · p j for p j < mi, j and
ui, j(p j) = −∞ otherwise. This reduction does not work if
ui, j(p j) = vi, j − ci, j · p j for p j < mi, j and ui, j(p j) = −∞
otherwise. We give a polynomial-time mechanism for util-
ity functions of this form in [5].

Theorem 3. The outcome (μ̂, p̂) is bidder optimal for v̂ =
(v̂ i, j), r̂ = (r̂ j), m̂ = (m̂i, j) and utility functions ui, j(p j) =
vi, j − ci · c j · p j if p j < mi, j and ui, j(p j) = −∞ otherwise if
and only if the outcome (μ, p), where μ = μ̂ and p = (c j · p̂ j),
is bidder optimal for v = (v̂ i, j/ci), r = (c j · r̂ j), m = (c j · m̂i, j)

and utility functions ui, j(p j) = vi, j − p j if p j < mi, j and
ui, j(p j) = −∞ otherwise.

Proof. Since p̂ j < m̂i, j if and only if p < mi, j we have that
ûi, j(p̂ j) = ci · ui, j(p j). Since μ̂ = μ this implies that ûi =
ci · ui for all i.
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Fig. 4. Bidders are on the left side and items are on the right side of
the graphs. The numbers next to the bidders indicate the utilities that
they would get if they were matched to one of their first choice items.
The numbers next to the items indicate their prices. The labels along the
edges show valuations and reserve prices. Edges in F̃ p ∩μ are thick, edges
in F̃ \ μ are thin, edges in F p \ F̃ p are dashed, and all other edges are
dotted. If the prices of the items in F p(T ) are updated as in [1], i.e., δres =
mini∈T , j∈F p (i)\ F̃ p (i)(ri, j − p j), then bidder 1 gets unmatched. This shows

that with bidder-item dependent reserve prices ri, j bidders can also get
unmatched if no maximum price is reached.

Feasibility. Since ci > 0 for all i and c j > 0 for all j we
have that ûi � 0 for all i, p̂ j0 = 0 and p̂ j � 0 for all j if
and only if ui = ûi/ci � 0 for all i, p j0 = c j · p̂ j0 = 0 and
p j = c j · p̂ j � 0 for all j. Since μ = μ̂, r j = c j · r̂ j , and
p j = c j · p̂ j for all i and j we have that r̂ j � p̂ j for all
(i, j) ∈ μ̂ if and only if r j � p j for all (i, j) ∈ μ.

Envy freeness. If (μ̂, p̂) is envy free then (μ, p) is
envy free because ui = ci · ûi � ci · ûi, j(p̂ j) = ui, j(p j) for
all i and j. If (μ, p) is envy free then (μ̂, p̂) is envy
free because ûi = ui/ci � ui, j(p j)/ci = ûi, j(p̂ j) for all i
and j.

Bidder optimality. Suppose that (μ̂, p̂) is bidder optimal
but (μ, p) is not. Then there must be an envy free outcome
(μ′, p′) such that u′

i > ui for at least one i. By transform-
ing (μ′, p′) into (μ̂′, p̂′) we get an envy free outcome for
which û′

i = ci · u′
i > ci · ui = ûi . Contradiction!

Suppose that (μ, p) is bidder optimal but (μ̂, p̂) is not.
Then there must be an envy free outcome (μ̂′, p′) such
that û′

i > ûi for at least one i. By transforming (μ̂′, p̂′)
into (μ′, p′) we get an envy free outcome for which u′
i =

û′
i/ci > ûi/ci = ui . Contradiction! �
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Appendix A. Counter example

Example 4. There are three bidders and three items. The
valuations are v1,1 = 4 and v1,2 = v2,2 = v2,3 = v3,2 =
v3,3 = 6. The reserve prices are r1,1 = r1,2 = r2,3 = r3,3 = 0
and r2,2 = r3,2 = 4. All other valuations and reserve prices
are zero. Maximum prices are infinity. See Fig. 4.
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