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Abstract. A non-decreasing sequence of n integers is the degree se-
quence of a 1-tree (i.e., an ordinary tree) on n vertices if and only if
there are least two 1’s in the sequence, and the sum of the elements is
2(n − 1). We generalize this result in the following ways. First, a natu-
ral generalization of this statement is a necessary condition for k-trees,
and we show that it is not sufficient for any k > 1. Second, we iden-
tify non-trivial sufficient conditions for the degree sequences of 2-trees.
We also show that these sufficient conditions are almost necessary using
bounds on the partition function p(n) and probabilistic methods. Third,
we generalize the characterization of degrees of 1-trees in an elegant and
counter-intuitive way to yield integer sequences that characterize k-trees,
for all k.

1 Introduction

1.1 Degree Sequence and Characterization

Definition 1. The degree sequence of an undirected graph G = (V, E) is the
list of degrees of its nodes, with duplication, sorted in non-decreasing order. A
graphic sequence is a sequence of integers which is the degree sequence of a
simple undirected graph. That is, a graph that does not contain loops or parallel
edges. Graph G realizes a degree sequence ∆ if ∆ is the degree sequence of G.

The basic sequence recognition problem is to determine whether a sequence of
integers is a graphic sequence at all. This problem was solved half a century ago
by Havel [9], Hakimi [7] and Erdös and Gallai [3]. Their solutions are construc-
tive. That is, if the sequence is graphic, they show how to construct a simple
graph that realizes it.

For a specific graph class C, there can be two types of classification results.
The first type is a global classification, where we are given a sequence ∆ and
need to determine whether every simple graph that realizes ∆ belongs to C. The
second type is an existential classification, where we need to determine whether
there exists a graph in C that realizes ∆ and, if so, to construct one.
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Hammer and Simone [8] studied split graphs, which are graphs that have the
property that their node set can be partitioned into a clique and an independent
set. Their results imply that if G is a split graph, then any graph with the same
degree sequence as G is also a split graph. Furthermore, the degree sequences
that are realized by split graphs can be identified in linear time. Another example
of a sequence recognition result was conjectured by Erdös et al. [15] and proved
by Li et al. [12]. The problem is to find the minimal value σ(k, n) such that
every graphic sequence of length n without zero terms that sums to σ(k, n) can
be realized by a graph that contains a clique of size k +1. This value was shown
to be σ(k, n) = (k − 1)(2n − k) + 2. A related result is the Turán number [16]
ex(k, n) which is the smallest integer such that a graph with n nodes and ex(n, k)
edge is guaranteed to contain a clique of size k + 1 [4].

In this paper we consider the characterization problem of k-trees.

1.2 k-Trees and Previous Work

Definition 2. A k-tree is recursively defined as follows.

1. A complete graph with k + 1 nodes is a k-tree.
2. If G is a k-tree and the nodes v1, . . . , vk form a k-clique in G, then the graph

obtained by adding a node to G and connecting it by an edge to each of
v1, . . . , vk is a k-tree.

A 1-tree is a tree, hence this definition generalizes the notion of a tree. The
minimum degree of a node in a k-tree is k, and in the context of a k-tree, by
“leaf” we mean a node of degree k. Given an input graph, it can be determined
in time O(kn) whether this graph is a k-tree [5,13]. Every k-tree has treewidth
k, and in fact k-trees are instrumental in one of the definitions of treewidth [14].
Degree sets of k trees have been studied extensively by Duke and Winkler [1,2,18].
Note that, while degree sequences are ordered in non-decreasing order, the degree
set has no sequence information, nor the number of times a certain number may
be used as the degree of a vertex. In this sense, characterizing degree sequences
is harder than characterizing degree sets. In particular they show that degree
sets of 2-trees are indeed characterized by the degree sets of 2-caterpillars, see
Definition 6, which are a subclass of 2-trees. In [1], Duke and Winkler show that if
D is any finite set of positive integers, which includes 1, then D is the set of vertex
degrees (for a slightly different but equivalent definition of “degree”) of some k-
tree for k=2,3, and 4, and that there is precisely one such set, D = {1, 4, 6},
which is not the set of degrees of any 5-tree. They also show for each k ≥ 2 that
such a set D is the set of degrees of some k-tree, provided only that D contains
some element d, which satisfies d ≥ k(k − 1) − 2

⌊
k
2

⌋
+ 3.

However, prior to our work, degree sequences only of trees were characterized:

Theorem 1 (Folklore). A degree sequence ∆ =< d1, d2, . . . , dn > can be real-
ized by a tree iff:

1. 1 ≤ di ≤ n − 1 for all 1 ≤ i ≤ n.
2.

∑n
i=1 di = 2n − 2.
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1.3 Our Work and Results

This work follows from an effort to characterize degree sequences of 2-trees.
Theorem 1 shows that the necessary conditions on the degree sequence of a tree
are indeed sufficient. A natural generalization of this theorem would be that,
for all k ≥ 0, the necessary conditions for the degree sequence of a k-tree, see
Definition 3, are sufficient. However, in this paper (see Section 2, we show that
the conjecture is false for all k ≥ 2. Following this, in Section 3, we identify
the right generalization of degree sequences in a way that helps to characterize
such sequences that correspond to k-trees. The generalization lies in viewing the
degree sequence of a graph in a slightly different way; the entries of a degree
sequence count the number of 2-cliques(edges) that contain a 1-clique(a vertex).

While we show that plausible k-sequences (see Definition 3) do not character-
ize k-trees, we present some fundamental results on them for k = 2. In Section 4
we show that if a plausible 2-sequence contains a 3, then it is the degree sequence
of 2-tree. In this proof, we identify a structure of a 2-tree that makes it possible
to output such a tree in linear time. Having shown that a plausible 2-sequence
which contains a 3 is the degree sequence of a 2-tree, we show in Section 5 that
almost every plausible 2-sequence contains a 3 and hence almost every plausible
2-sequence is realizable. This proof is based on the idea that for a certain num-
ber n, each plausible 2-sequence corresponds to a partition of 2n − 7. We then
use bounds on the partition function p(n) [10,11,17], the integer function that
counts the number of partition of n, to prove the claim.

Throughout the paper, the symbol n usually denotes the size of a k-tree or a
degree sequence. We sometimes identify nodes by their degree. For example, by
“adding a 3”, we mean “adding a node of degree 3”.

2 Non-realizable k-Sequences

For 1-trees it turns out that the necessary conditions on the degree sequence
are indeed sufficient. The natural conjecture would be that the same holds for
k-trees too, for k ≥ 2. In Lemma 1 we show that this conjecture is false for
k-trees by exhibiting one class of sequences that satisfy the necessary conditions
but are not realizable by k-trees. To show this we define plausible k-sequences
as those that satisfy the necessary conditions.

Definition 3. A sequence of integers ∆ =< d1, d2, . . . , dn > is a plausible k-
sequence if the following conditions hold:

1. di ≤ di+1 for all 1 ≤ i < n.
2. dn ≤ n − 1.
3. d1 = d2 = k.
4.

∑n
i=1 di = k(2n − k − 1).

Lemma 1. For every k > 1, for every integer n such that b = k(n+1)
k+2 is a

positive integer, the plausible k-sequence d1 = d2 = . . . = dn−k−2 = k, dn−k−1 =
. . . = dn = b is not the degree sequence of any k-tree.
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Proof. Consider a k-tree T corresponding to the said plausible k-sequence. Let
L ⊆ T be the set of all nodes of degree k. Now T − L induces a k-tree on k + 2
nodes, which has two non-adjacent nodes, say a and b, of degree k. Now, no matter
in what order we add the vertices of L to obtain the k-tree T from the k-tree T −L,
we will never be able to equalize the degrees of T −L. The proof is by an averaging
argument, and exploits the fact that a and b are not adjacent. Let us consider the
following two vertex sets A = {a, b}, and B = T − L − A. In each step of a
construction of T from T − L, we show that the average degree of vertices in B is
more than the average degree of vertices in A. Clearly, in T −L, the average degree
in A is k, and in B it is k+1. Whenever a new vertex is added, it must be adjacent
to at least k−1 vertices in B and at most one vertex in A. Therefore, after adding
m vertices, the average degree of A will be at most k+ m

2 , and the average degree of
vertices in B will be at least k+1+ m(k−1)

k . So the degrees of vertices in T −L can
never become all equal. Therefore, d1 = . . . = dn−k−2 = k, dn−k−1 = . . . = dn = b
is not the degree sequence of a k-tree. �

3 Integer Sequences That Characterize k-Trees

Definition 4. The (k, k + 1)-degree of a k-clique C in a graph G is defined
as the number of (k + 1)-cliques in G which contain C. The (k, k + 1)-degree
sequence of a graph G is the list of (k, k + 1)-degrees of the k-cliques in G, with
duplicates, sorted in non-decreasing order.

The (1, 2)-degree sequence of a graph is its degree sequence, and its (2, 3)-degree
sequence can be thought of as the edge-triangle degree sequence.

Definition 5. For n ≥ k + 1, a sequence of integers ∆ =< d1, d2, . . . , dr > is a
(k, k + 1)-sequence if the following conditions hold:
1. r = k + 1 + (n − k − 1)k.
2. di ≤ di+1 for all 1 ≤ i < r.
3. If n = k + 1, di = 1 for 1 ≤ i ≤ k + 1. If n > k + 1, then di = 1 for

1 ≤ i ≤ 2k.
4.

∑r
i=1 di = (k + 1)(n − k).

The following two lemma follow from the definition of a (k, k +1)-sequence, and
are used in the proof of Theorem 3, which is our main theorem.

Lemma 2. For n = k + 1, the (k, k + 1)-sequence is unique and every element
is a 1. For n = k + 2, the (k, k + 1)-sequence is unique; d1 = d2 = . . . = d2k =
1, d2k+1 = 2.

Lemma 3. Let r > k + 1. Let < d1, . . . , dr > be a (k, k + 1)-sequence and let
l be the smallest integer such that dl > 1. If < dk+1, . . . , dl − 1, . . . , dr > is the
(k, k +1)-degree sequence of a k-tree, then < d1, . . . , dr > is the (k, k +1)-degree
sequence of a k-tree.

Theorem 2. Let ∆ =< d1, d2, . . . , dr > be a sequence of integers. Then ∆ is
the (k, k + 1)-degree sequence of a k-tree iff ∆ is a (k, k + 1)-sequence.
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Proof.First we prove the necessary condition. In a k-tree on n vertices, the num-
ber of k-cliques, denoted by r, is k(n − k) + 1. Further, the sum of the entries
in the (k, k + 1)-degree sequence < d1, d2, . . . , dr > is

∑r
i=1 di = (k + 1)(n − k).

The proofs of these claims are by induction on n. The base case is for n = k +1;
in this case there are k k-cliques, a unique k + 1-clique, and the sum of the
degrees is k + 1. To complete the induction, if we assume that these formulas
hold for n, proving that they hold for n + 1 follows by simple arithmetic. We
now prove the property on the entries of the degree sequence. If n = k + 1,
as observed before, there are k k-cliques, and a unique k + 1-clique. So the de-
gree sequence is d1 = d2 = . . . = dk+1 = 1. For the case of n > k + 1, we
observe a simple invariant maintained in every k-tree: there are two vertices of
degree k, this property is easily seen in the inductive construction of k-trees.
Further, in a k-tree a vertex of degree k is present in exactly k k-cliques. Each
of these k-cliques is contained in the unique k + 1-clique induced by the vertex
and all its neighbors. The entries corresponding to these k k-cliques are 1 in the
(k, k + 1)-degree sequence. Since there are two vertices of degree k in any k-
tree, it follows that there are 2k 1’s in the (k, k +1)-degree sequence. Therefore,
d1 = d2 = . . . = d2k = 1.

We prove the sufficient condition by induction on the length of the (k, k + 1)-
sequence. Let us consider a (k, k + 1)-sequence d1, d2, . . . , dr. If r = k + 1, then
the corresponding k-tree is the clique of k + 1 vertices. If r = 2k + 1, then the
corresponding k-tree has k + 2 vertices in which there is a k-clique, and two
non-adjacent vertices are both adjacent to each vertex in the k-clique. There
are no other vertices and edges in the graph. Therefore, (k, k + 1)-sequences of
length k + 1 and 2k + 1 can be realized by k-trees, which is the base case for
our induction. Let us consider the case when r > 2k + 1. Let l be the smallest
integer such that dl > 1. Clearly, l > 2k. We show that dk+1, . . . , dl − 1, . . . , dr

is a (k, k + 1)-sequence. The sum of the degrees is clearly (k + 1)(n − 1 − k).
We only need to show that dk+1 = dk+2 = . . . = d3k = 1. If we assume not
that is we assume that dk+1 = . . . db = 1, b < 3k. Then it follows that we have
k(n − 1 − k) + 1 − b + k entries in the sequence which are more than 1. Further,
we also know that the sum of these entries is (k + 1)(n − 1 − k) − b + k. It now
follows that (k + 1)(n − 1 − k) − b + k ≥ 2k(n − 1 − k) + 2 − 2b + 2k, that is
b ≥ (n−1−k)(k−1)+k+2. If b < 3k, then it follows that 2k−2 > (n−1−k)(k−1),
which in turn implies that n < 2 + (k + 1), that is n = k + 1 or n = k + 2. This
means r ≤ 2k+1, a contradiction to the fact that we are considering r > 2k+1.
Therefore our assumption that dk+1, . . . , dr is not a (k, k+1)-sequence is wrong.
Inductively, dk+1, . . . , dl − 1, . . . , dr is the (k, k + 1)-degree sequence of a k-tree.
By Lemma 3 it now follows that d1, . . . , dr is also the (k, k + 1)-degree sequence
of a k-tree. Hence the characterization is complete. �

4 Sufficient Conditions for 2-Trees

In this section we present our main results on the sufficient conditions on the
degree sequence of 2-trees.
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We call a 2-tree, which contains exactly two leaves, a 2-chain. In a 2-tree T ,
a pruning sequence is a minimal sequence of degree 2 nodes of T such that after
removing these nodes according to the sequence, we get a 2-chain. The process
of applying a pruning sequence to a 2-tree is called pruning.

Definition 6. A 2-caterpillar is either a 3-clique, or a 2-tree with a pruning
sequence.

Definition 7. For each l ≥ 1, a [d1, d2, . . . , dl]-path is a path v1, . . . , vl such
that for 1 ≤ i ≤ l, the degree of vi is di. For l = 2, we refer to a [d1, d2]-path as
a [d1, d2]-edge.

Theorem 3. If a plausible 2-sequence contains at least one 3, then it is the
degree sequence of a 2-tree. Furthermore, if n > 4 then there is 2-tree realizing
this degree sequence in which there is a [2, 3,min1]-path, where min1 = dl and
dl ≥ 4 but dl−1 < 4. If l < n, then there is even a [2, 3,min1,min2]-path. Here
min2 = dl+1, i.e., min2 is the next degree in the sequence.

The proof of this theorem will be by induction on n, i.e., the number of vertices.
In the induction step, certain boundary cases can occur. These special cases are
dealt with by the following lemmas.

Lemma 4. If in a plausible 2-sequence dn−1 < 4, then the sequence contains
exactly two 2’s and dn = n − 1. Further, such a sequence is the degree sequence
of a 2-tree. In this special case, Theorem 3 holds.

Proof. Since
∑n

i=1 di = 4n − 6, and the fact that d1 = d2 = 2, it follows that
∑n

i=3 di = 4n−10. Hence,
∑n−1

i=3 di ≥ 3n−9 = 3(n−3) as dn ≤ n−1. Therefore,
the average value of {d3, . . . , dn−1} is at least 3. Since dn−1 < 4 it follows that∑n−1

i=1 di = 2t + 3(n − t − 1) = 3n − t − 3, where t is the number of 2’s in
d1, . . . , dn−1. Therefore, dn = n + t − 3. Since dn ≤ n − 1, it follows that t ≤ 2.
Therefore, t = 2, and consequently, d3 = . . . = dn−1 = 3, dn = n − 1. This
sequence is trivially realized by a “fan”: a central node of degree n − 1, which
is surrounded by nodes of degree 3 with a node of degree 2 at either end of
this ring. �

d3

d1 d2

d3+1

d1
new node
of degree 3

d2

Fig. 1. Inserting a node of degree 3 to
a [d1, d2, d3]-triangle and changing the
degree of only one node from d3 to
d3 + 1

d

degree 3
node to be
removed

3 3

d-1

Fig. 2. Deleting a node of degree 3
from a [3, 3, d]-triangle and changing the
degree of only one node from d to
d − 1
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Lemma 5. A plausible 2-sequence with exactly two 2’s in the sequence will also
contain at least one 3. Such a sequence is the degree sequence of a 2-tree. In this
special case, Theorem 3 holds. In fact, the nodes of high degrees h1, h2, . . . , hr,
where the hj are the subset of the degrees di with di ≥ 4, can be arranged in any
arbitrary order such that there is a [2, 3, hj1 , . . . , hjr ] path.

Proof. In the explicit construction we will, first, reduce all nodes of degree > 4
to degree 4 and then remove the “appropriate” number of 3’s from the sequence,
namely, a node of degree 4+x corresponds to x nodes of degree 3, as the sum is
fixed at 4n − 6 and there are only two 2’s. This, in the end, leaves a sequence of
the form 2, 2, 3, 3, 4, 4, . . . , 4 with exactly two 2’s, two 3’s and the same number
of 4’s as nodes of high degree in the original sequence. This sequence is then
realizable by a “straight chain”. See Figure 3 for an illustration. Once we have
this basic backbone, we fix a [2, 3, 4, 4, 4, . . . , 4]-path and identify the 4’s with the
desired degrees hj1 , . . . , hjr . For each such node of intended degree hjs we then
insert (hjs − 4) 3’s into the 2-tree, as illustrated in Figure 1. Figure 3 illustrates
the whole process. �

4 4

4 4

4

4

4 2

3

4

h1

4

4

h24 33 3

3

2

4

3

2 4 4

3

23 3 3 3

Fig. 3. Inserting (hi −4) degree 3 nodes on a [4, . . . , 4]-path (shown in bold), changing
the degree of degree 4 nodes to hi, if hi > 4. The nodes are labelled by their degrees.

Lemma 6. If dn = n − 1 in a plausible 2-sequence, then the sequence is the
degree sequence of a 2-tree. In fact, the nodes of high degrees h1, h2, . . . , hr,
where the hj are the subset of the degrees di where di ≥ 4, can be arranged
in any arbitrary order such that, if the 2-sequence contains a 3, there is a
[2, 3, . . . , 3, hj1 , . . . , hjr ] path passing through all nodes of degree 3 consecutively
or, if the 2-sequence does not contain a 3, there is [2, hj1 , . . . , hjr ] path.

Proof. Note that the combination of the conditions of Lemmas 5 and 6 leads
to the very strict conditions of Lemma 4. So we can assume that there are at
least three 2’s in the sequence. The proof of the lemma is by induction. The
induction starts at n = 5 with the only plausible sequences < 2, 2, 2, 4, 4 >
and < 2, 2, 3, 3, 4 >, both of which are realizable as desired by inspection. Now
suppose the lemma holds for up to n. Note that we can always assume that hj1

is not the maximum degree n − 1 (for n nodes) as, if the sequence is realizable,
the node of maximum degree will be connected to all other nodes and can thus
be inserted anywhere along an existing path. So, we can first move it to “the
end” by assuming hjr = n− 1. If there is only one node of high degree ≥ 4, then
we are also in the case of Lemma 4. Now, given a 2-sequence with n + 1 degrees
and dn+1 = n and 4 ≤ hj1 < n, simply remove a 2, as there are at least three
2’s by the comment before, and reduce both the maximum degree dn+1 and the
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degree hj1 by one and apply induction. As the node of maximum degree, which
now has degree n−1, is still connected to all remaining nodes it is, in particular,
connected to the node of degree hj1 − 1. Hence, we can put a leaf back on top
of the [n − 1, hj1 − 1]-edge to get back the original degree sequence. �

The following observation, illustrated in Figure 2, will allow us to reduce the
sequences of 3’s along the path to a single 3.

Observation 1. Given a [3, 3]-edge as part of a [3, 3, d]-triangle in a 2-tree, we
can remove one of the two 3’s while also reducing d to d − 1 and we obtain
another 2-tree.

Corollary 1. If dn = n − 1 in a plausible 2-sequence, then the sequence is the
degree sequence of a 2-tree. In fact, if the 2-sequence contains at least one 3,
then the nodes of high degrees h1, h2, . . . , hr, where the hj are the subset of the
degrees di with di ≥ 4, can be arranged in any arbitrary order such that there is
a [2, 3, hj1 , . . . , hjr ] path. Thus, in particular, for dn = n − 1 Theorem 3 holds.

Proof. Note that if, in the case where dn = n−1, we have a [3, 3]-edge, then both
corresponding nodes must also be connected to the central node of degree n− 1.
Thus, using the observation above, we can remove one of the nodes of degree 3
along with its edge connected to the node of degree n − 1 (now becoming n − 2)
and bridge its other two edges thereby leaving all other degrees unchanged. If
we now put a leaf on top of the other leaf, which is not involved in the desired
path, then this 2 becomes a 3, we insert another 2 (the newly added leaf) and
the central node of degree n − 2 goes back to degree n − 1. Using this trick
repeatedly, we can remove any sequence of 3’s along the path to a single 3. �

With these lemmas, we can now prove the Theorem 3.

Proof. The statement is proved constructively by induction on n. The statement
holds for n = 4. At each step, if we ever get left with (a) only one high degree
greater than 3, (b) only two 2’s or (c) dn = n − 1, then we refer to the lemmas
above, namely Lemma 4, Lemma 5 and Corollary 1

Case 1. Assume that we have no 4’s in the sequence, so min1 > 4 and min2 > 4.
Then reduce min1 and min2 by 1 and remove a 2 from the sequence. This gives
another plausible 2-sequence and there will also remain at least one 3. So, by the
induction hypothesis, construct a 2-tree with a [2, 3, min1 − 1, min2 − 1]-path.
Observe that by reducing the two minima among the vertices of degree more
than 3, they will still remain the minima, as min1, min2 > 4. Add a vertex to
this 2-tree and connect it to the two last nodes on this path. This gives a 2-tree
realizing our original sequence of length n.

Case 2. Now assume we have at least one 4 in the sequence, so min1 = 4. Then
reduce a 3 to a 2, reduce a 4 to a 3 and remove a 2. Again, this will give a
plausible 2-sequence of shorter length with at least one 3. Observe that min2 has
now become the smallest high degree. By induction, we then get a [2, 3, min2, x]-
path for some x. Add a vertex and connect it to the first two nodes on this path.
This then gives a [2, 3, 4, min2]-path. �
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5 Almost Every Plausible 2-Sequence Is Realizable

Let the partition function p(n) give the number of ways for writing a positive
integer n as a sum of positive integers, where the order of addends is not con-
sidered. From [10,11,17], we know the following asymptotic formula.

Theorem 4. As n → ∞, p(n) → exp(π
√

2n/3)
4
√

3n
.

Lemma 7. The number of plausible 2-sequences of size n is at most p(2n − 6).

Proof. The lemma follows from the fact that every plausible 2-sequence ∆ of size
n defines a unique partition of the number 2n−6. It is because, by subtracting 2
from each number of ∆, we get a monotonic sequence of n non-negative numbers,
whose sum is (4n − 6) − 2n = 2n − 6. �

Lemma 8. The number of plausible 2-sequences of size n containing at least
one 3 is greater than p(2n − 7) − 2n · p(n).

Proof. Let ∆ =< di >n
i=1 be a plausible 2-sequence of size n containing at least

one 3. Since the sum of all di’s is 4n − 6 and since ∆ contains at least two
2’s and one 3, the sum of the remaining n − 3 elements in ∆ is 4n − 13. Now,
since all the elements are bigger than or equal to 2, ∆ defines a partition of
the number (4n − 13) − 2(n − 3) = 2n − 7 into n − 3 blocks. However, not all
partitions (b1, . . . , bl) of 2n − 7 correspond to plausible 2-sequences. There are
two types of partitions which do not correspond to plausible sequences. First,
the partition may contain more than n − 3 blocks and thus cannot correspond
to a 2-sequence of size n; we call such a partition a “long partition”. Below
we show that the total number of such partitions is bounded from above by
np(n). Since the order of the partition is not considered, we can assume that a
partition is sorted non-increasing order. Therefore, if the partition is “long”,
then bn−2 = 1, because bi ≥ 1 for all i ≤ n − 3 and

∑n−2
i=1 bi ≤ 2n − 7.

Therefore, bn−2+i ≤ 1 for all i ≥ 1 and there is a unique j, determined by
the sum of b1, . . . , bn−3 such that bl = 0 for l ≥ j. Hence, a “long” partition
is determined by the sum S of the first n − 3 elements of the partition. Since
n − 5 = 2n − 7 − (n − 2), it follows that n − 3 ≤ S ≤ 2n − 8 and therefore the
number of long partitions is exactly

∑n−5
i=1 p(i). Finally, since p(n) > p(n−5− i)

for all i = 1, 2, . . . , n − 5, it follows that the number of long partitions is less
than np(n).

The other type of partitions of 2n − 7 that do not correspond to plausible k-
sequences are those for which the biggest number is greater than n − 3, leading
to a 2-sequence which violates the maximum condition. The sum of the rest of
the numbers in the partition is between 1 and n − 5. Therefore the number of
such partitions is at most

∑n−5
i=1 p(i), which is again less than np(n). Thus the

lemma follows. �

Theorem 5. Almost every plausible 2-sequence is realizable by a 2-tree.
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Proof. By Theorem 3, it is enough to show that almost every plausible 2-sequence
contains a 3. Consider a random experiment that picks a sequence randomly
from the set of all plausible 2-sequences. Denote by A an event that the picked
sequence contains a 3. By Lemma 7 and 8, we have Pr[A] ≥ p(2n−7)−2n·p(n)

p(2n−6) . From
Theorem 4 we know that the right hand side approaches 1 as n approaches ∞,
so we have limn→∞ Pr[A] = 1, hence the result. �
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