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ABSTRACT
We investigate the problem of mining “tips” from Yahoo!
Answers and displaying those tips in response to related web
queries. Here, a “tip” is a short, concrete and self-contained
bit of non-obvious advice such as “To zest a lime if you don’t
have a zester : use a cheese grater.”

First, we estimate the volume of web queries with“how-to”
intent, which could be potentially addressed by a tip. Sec-
ond, we analyze how to detect such queries automatically
without solely relying on literal “how to *” patterns. Third,
we describe how to derive potential tips automatically from
Yahoo! Answers, and we develop machine-learning techniques
to remove low-quality tips. Finally, we discuss how to match
web queries with “how-to” intent to tips. We evaluate both
the quality of these direct displays as well as the size of the
query volume that can be addressed by serving tips.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation

1. INTRODUCTION
For millions of users, search engines constitute the main

entry-point to the web, as well as a powerful tool to delve
into a wealth of available information. The evolution of web-
search engines has been very rapid. Over the years, not only
the quality of search results has kept improving, but a large
number of novel features has allowed users to find informa-
tion directly, without the need to click on links away from the
search-engine result page. Examples of such features include
query recommendations, smart snippets, integration of rich
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content (images, videos, news, celebrities), direct displays
(weather, stock quotes, calculators), and so on.

In this work, we take this approach further by attempt-
ing to answer common “how-to” queries directly, rather than
serving links to sites that contain answers. For example,
when a user searches for “how to round decimal in C” we
would like to display “To round a decimal in C: add 0.5 and
then floor the value – what you call dropping the decimal.
Looks like this: int x = (my float + 0.5);”1

We obtain potential answers by mining Yahoo! Answers,2

the biggest online site for collaborative question-answering.
However, rather than looking at all potential answers, in-
cluding those that are long or those that are opinions rather
than concrete solutions, we focus on extracting tips. In our
context, a tip is a piece of advice that is (i) short (160 char-
acters maximum3), (ii) concrete (it has to be actionable),
(iii) self-contained (understandable without additional ex-
ternal sources), and (iv) non-obvious (otherwise it would
be useless). Our focus on tips is mostly motivated by the
limited screen real estate, in particular on mobile devices.
Furthermore, short and to-the-point tips are often interest-
ing even when they do not perfectly address the underlying
problem. Hence, we expect users to be more forgiving than
with, say, irrelevant web search results.

To materialize our idea into a functional system we need to
address three sub-problems: (i) identify when a user query
is a how-to query for which it is valuable to display a tip
as an answer; (ii) extract tips from online resources and
populate a large database of high-quality tips; and (iii) given
a how-to query retrieve relevant tips for that query. Each
of the three sub-problems has its own challenges which we
we address in this paper. We address them independently
creating a modular system, which is easier to build, evaluate,
and improve. Figure 1 shows how the different modules
connect to each other. The flow of the paper follows the
decomposition of our problem into the three sub-problems.
In particular, we make the following contributions:

• Using query logs we estimate a clear how-to intent in
2.0% of the total search volume of a commercial search
engine (Section 3). This is done to demonstrate that
directly answering such queries could have a significant

1
http://yhoo.it/ly2f1S

2
http://answers.yahoo.com

3160 characters is the maximum length for an SMS.
See http://latimesblogs.latimes.com/technology/2009/05/
invented-text-messaging.html for an explanation of this
limitation.
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Figure 1: A schematic overview of the system.

impact, as most of the interesting open problems in
web IR concern non-navigational queries [28].

• We develop methods to automatically detect queries
with how-to intent, even when they do not match the
literal“how to X”pattern (Section 4). Our best method
annotates 1.13% of the total search volume as having a
how-to intent. 83.5% of this volume has a clear how-to
intent, according to human evaluators.

• We propose a mechanism to automatically extract tips
from Yahoo! Answers (Section 5). We used a crowd-
sourcing platform to evaluate 20 000 candidate tips
found by our method. 25% of the candidate tips were
judged as “very good,” 48% as “ok,” and 27% as “bad.”

• Given the labeled set of tips, we use machine learning
techniques to filter tips of low quality (Section 5). We
obtain a precision of 0.94 (over 10-fold cross-validation)
for the best method when separating potentially useful
tips from candidates labeled as “bad.”

• We match the set of found how-to queries to the tips
labeled by the classifier (Section 6). The matching al-
gorithm with the highest precision (0.92) returns a tip
for 4.5% of the how-to queries. The coverage can be
doubled to 10.0%, at the cost of precision dropping
to 0.75.

To place our work in the context of question-answering
and other related work we survey previous research in Sec-
tion 7. Finally, we conclude by discussing drawbacks, strengths
and future work in Section 8.

2. QUERY DATASET
We used a large sample of a query log of a commercial

search engine. The sample contained queries submitted from
May 1, 2010 to January 31, 2011. We used only queries by
users who had an identifiable cookie related to their account
with the search engine, which is also a major email provider.
This selection was done to remove a large amount of search
spam, typically issued by users who seek to avoid being iden-
tified. We also restricted our dataset to queries that led to at

least one result click, which is the vast majority of queries.
This selection was done since one of our techniques in Sec-
tion 4 makes explicit use of click information.

The queries were anonymized by replacing potentially sen-
sitive information by special symbols. An inspection of these
cases lets us believe that this anonymization does not alter
the results in our study as queries which underwent this
process are practically never related to how-to intents. Fi-
nally, the queries were normalized for case, punctuation,
stop-words, and word order.

In Section 4.4 we also made use of click information on a
per-host basis and so, for completeness we explain how to
obtain hostnames here. To map clicked URLs to hostnames
we removed any prefix of the type (http | https | ftp)://. If
the rest started with www., this token was also removed.4

3. PREVALENCE OF HOW-TO QUERIES
Before embarking to solve the problem of finding tips for

answering how-to queries, we need to convince ourselves that
this is a meaningful problem. So our first question is whether
how-to queries make up a large fraction of the search volume.

To answer this question, we sampled a few thousand dis-
tinct queries, which were then evaluated by human judges.5

To obtain better insight whether how-to queries are more
prominent among frequent head queries or rare tail queries,
we sampled in different ways from the query distribution.
The details are presented in the next section.

As far as what actually constitutes a query with a how-to
intent, we used the following definition.

A query is said to have how-to intent if the user
is looking for information on solving a particular
problem or performing a particular task.

How-to queries are almost never navigational and rarely
transactional. A query such as “online calculator” already
implies that the user knows of the existence of relevant on-
line services and is just trying to find any of them. How-to
queries are mostly informational. A query such as “compute
logs in java” would fall into this category.

Judges were asked to evaluate if a query has a how-to
intent using a 4-point scale:

2 – clear how-to intent;
1 – possible how-to intent;
0 – no how-to intent;

-1 – foreign language/character set or unintelligible.

The same scale is used in Section 4 where we discuss al-
gorithms to automatically identify how-to queries. Table 1
lists a few queries for these classes.

3.1 Evaluation results
The three judges evaluated three distinct query sets. First,

a set obtained by sampling 1 000 queries uniformly from the
query volume. This set contains a noticeable fraction of (re-
peated) head queries. Second, a set obtained by sampling
1 000 queries uniformly from the set of distinct queries. This
set has a stronger bias towards the tail of the query distribu-
tion than the previous one. Finally, the third set consists of
the top 1 000 distinct queries, which are mostly navigational.
4These are not necessarily hostnames in a strict technical
sense as “bbc.co.uk” and “www.bbc.co.uk” could be served
by different hosts.
5The authors of this paper.
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2: clear how-to how to install a remington trigger, start a wiki, clean iphone screen, how to hook up tv vcr and dvd
1: possible how-to copper cleaner homemade, paper match rocket, pizza dough, hair spiking
0: not how-to my yahoo, mtv, cannon ef, women in war world 2, parkers uniforms houston

Table 1: Examples of queries that are clear how-to (“2”), possible how-to (“1”), and not how-to (“0”). Queries
judged as unknown (“-1”) largely contained non-Latin characters and are not displayed.

Metric unif. volume unif. distinct top volume
cov. vol. 2.0/1.4/96.3 2.9/3.6/91.6 0.0/0.9/99.0
cov. dist. 2.3/1.7/95.7 3.6/5.2/90.1 0.0/1.2/98.7
agreement 93.9 88.4 96.6

Table 2: Percentage of queries falling into the classes
“clear how-to query”/“possible how-to query”/“not
a how-to query” when queries are (i) sampled uni-
formly at random over all occurrences, (ii) sampled
uniformly at random over all distinct queries, or
(iii) the most frequent 1 000 queries. “Agreement” is
measured among the three judges as macro-average
over all three pairs.

Each set of 1 000 queries was then randomly divided into
one set of 100 and three sets of 300. Each of the three
judges evaluated 400 queries: the set of 100 and one of the
sets of 300. The common set was used to evaluate agreement
among the judges. In computing the agreement, a negligible
number of cases where at least one judge selected -1 (for-
eign language/character set or unintelligible) was skipped
and not counted as disagreement. The results are shown in
Table 2. We note that the fraction of strong disagreements,
2 vs. 0, was only a tiny fraction of all disagreements.

Overall, 2.0% of query volume and 2.3% of distinct queries
were identified as having a clear how-to intent. These frac-
tions are 0% for the most frequent queries though, but higher
when sampling from the tail As previous work shows that
the frequent queries, which are typically navigational, are
“solved” by all major web search engines [28], we believe
that a total of 2.0% is actually significant when it comes to
giving search engines an opportunity to differentiate them-
selves from their competitors.

4. DETECTING HOW-TO WEB QUERIES
In the previous section, we showed that how-to queries

make up a considerable part of the non-trivial search volume.
In this section, we discuss different approaches to detect
how-to queries automatically.

4.1 The obvious approach
The most basic approach to extract queries with a how-to

intent is to look at queries starting with one of the literal
strings “how to,” “how do i,” or “how can i.” Though the
precision for such an approach is very high, the recall will
be as low as only 1.0% of query instances.

Examples: “how to safely extinguish a campfire,”“how do
you fix keys on a laptop,”“how to do hair like audrey hep-
burn,”“how to train your dragon,”“how do you make your
basement smell better,”“how do i convert video formats.”

4.2 Action queries
More experienced users are less likely to enter their in-

formation need in natural language with a “how to” prefix.
Still, how-to queries could potentially be detected as they re-
fer to an action and are likely to contain, or even start with,
a verb. Hence, as another approach, we looked at all queries
starting with an English verb in its infinitive. Queries were
split on non-word characters and the first token was looked
up in a verb dictionary.6 Note that certain words such as
“dream” or “sound” are both verbs and nouns.

Examples: “play my music on tool bar raido,”“make your
own oversized bag,”“type of people who put christmas wreaths
on cars,”“dream symbols,”“sound,”“buy drawer handles.”

4.3 Generalizing literal “how to” queries
As the simple baseline using literal “how to” queries has

near-perfect precision, we try to come up with ways to im-
prove its recall, possibly by trading a bit of precision. Con-
cretely, from a query such as “how to fix a flat tire” we want
to derive that the query “fix a flat tire” also has a how-to
intent. Thus, for all the (literal) “how to”queries we extract,
we drop the “how to” prefix, and consider the resulting nor-
malized queries possibly having a how-to intent as well.7

However, this normalization alone is overly aggressive.
For example, the query “google” is recognized as having a
how-to intent, as our query log also contains the query “how
to google.” To avoid such incorrect generalizations, we look
at the fraction of times the normalized query appears with
and without the literal “how to” prefix. For example, the
normalized query “lose weight” appears as part of a literal
“how to” query in 80% of all occurrences. On the other
hand, for the normalized query“google,” the same fraction is
roughly 0.0001%. We experimented with a minimum thresh-
old of 1% (General-.01) and 10% (General-.10).

Examples: “how to dry corn,” “fit baseball glove,” “stop
computer script,”“craft ideas for boys,”“how to make choco-
late bars,”“tune your guitar online.”

4.4 Using typical how-to answer sites
One drawback of the previous approach is that it only

recognizes queries that have been issued at least once as
a literal “how to” query. To overcome this limitation we
also tried to identify typical how-to web sites, such as http:

//www.ehow.com/ or http://www.wikihow.com/. In analogy to
the previous approach, for each clicked host name we looked
at the fraction of literal “how to” queries leading to a click
on this particular host name. Again we look at the fraction
and not the volume of queries. For example, http://www.

youtube.com/ attracts a large volume of the literal “how to”

6Verbs used: http://www.englishclub.com/vocabulary/
regular-verbs-list.htm and http://www.englishclub.com/
vocabulary/irregular-verbs-list.htm.
7Whenever we refer to the literal “how to” string, we actual
mean any of “how to,”“how do i,” and “how can i.”
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how-to hosts with largest search volume
wikihow.com

getridofthings.com

howtogetridofstuff.com

dragoart.com

howcast.com

hosts attracing almost exclusively how-to questions
deletepermanently.howto4pc.org

how-to-flirt.org

howtolosefatfast.org

howtogettallersecrets.com

askmethat.com

Table 3: Top how-to host names.

queries but it is not a how-to site, as only 1% of queries
leading to a click on it are literal “how to” queries.

To identify how-to hosts, we experimented with two dif-
ferent parameters: (i) a minimum threshold on the fraction
of traffic-generating queries that are literal “how-to” queries,
and (ii) a minimum threshold on the total number of clicks
leading to a particular site.

Once how-to hosts were identified, we looked at their all
incoming queries. From these, navigational queries such as
“wikihow.com” were removed using a simple heuristic. This
heuristic judged a query as navigational (for a given click)
if all the tokens in the (normalized) query were also present
in the host name. Here we allowed an edit distance of 1 to
accommodate minor spelling mistakes. All remaining, non-
navigational queries were labeled as “how-to.” Host-.50-20
refers to a minimum how-to fraction of .50, where the actual
fraction had to surpass this threshold, and a minimum traffic
count of 20 for the host. Host-.25-10 is defined similarly.

Examples: “xbox 360 delete cache,”“fixing a wet cell phone,”
“fried rice,”“aspergers,”“how to french braid,”“what date is
it right to make out.”

4.5 Experimental evaluation
We evaluated the task of detecting how-to queries as a

classification task. We used the sample of the query log de-
scribed in Section 2. Our design principle is to put more em-
phasis on precision rather than on recall. Evaluating the ex-
act recall would require annotating all distinct queries with
ground truth labels, which is prohibitively expensive. In-
stead we report the fraction of total search volume that is
labeled by a particular approach in the“Coverage”column in
Table 4. To put the Coverage figures in perspective, we re-
mind the reader that in Section 3 it was showed that about
2.0% of total web search traffic has a clear how-to intent.
We evaluated the precision both for the 500 highest search
volume queries labeled by each method, as well as for a set
of 500 queries sampled uniformly among the distinct queries
detected by this method. Each set of 500 was split into one
set of 50 and three sets of 150. Each judge evaluated the set
of 50 and one set of 150. The set of 50 was used to estimate
inter-judge agreement. The same set of labels (2, 1, 0,−1)
as described in Section 3 was used.

As can be seen from Table 4, the simple baseline using the
literal “how to” string performs at a reasonable level. Using
the General-.10 approach, the coverage can be improved by
13% while still maintaining an acceptable level of precision.

Method Cover. Top 500 Rand 500
Baseline 1.01% 99.0/0.0/1.0 (100) 95.8/3.5/0.7 (92)
Verb-first 3.22% 2.3/6.2/91.5 (82) 7.3/7.0/85.7 (83)

General-.10 1.13% 83.5/9.8/6.8 (90) 87.3/6.3/6.3 (89)
General-.01 1.48% 33.8/14.2/52.0 (82) 81.5/9.2/9.2 (86)
Host-.50-20 0.08% 3.3/2.0/94.2 (97) 61.3/14.8/22.8 (61)
Host-.25-10 0.88% 0.0/0.7/99.3 (93) 29.4/16.1/54.2 (64)

Table 4: Experimental results for the detection of
how-to queries. The three numbers in the last two
columns refer to the percentage of (distinct) queries
voted “2”, “1” and “0” respectively. Top 500 refers to
the most frequent queries labeled as “how-to” by the
particular method. The macro-averaged inter-judge
agreement is given in parentheses.

It is also worth noting that the precision of the verb-first
approach could potentially be improved by removing navi-
gational queries such as “chase online” or “face.” Of course,
there is also a large number of other applicable techniques
for identifying “related queries,” e.g., in the context of query
suggestions [4, 15]. However, due to the fact that (i) the
how-to detection is completely modular and (ii) the perfor-
mance of General-.10 is sufficient, we decided to postpone
evaluation of more involved schemes to a later stage.

We also considered alternative approaches for detecting
how-to intent, such as using online sources, and in particular
web-search results. We looked at result snippets and the
page content to see if the query matches a “how to” string.
Preliminary work showed that this approach works well for
popular how-to queries, but as such queries are also detected
by other techniques we decided to postpone this approach.

5. MINING TIPS FROM YAHOO! ANSWERS
The next step is to identify a set of potential answers, or

tips. A tip is a piece of advice that is (i) short (160 charac-
ters maximum), (ii) concrete (it has to be actionable), (iii)
self-contained, and (iv) non-obvious. The editorial guide-
lines used for evaluating tips are described in Section 5.3.

We chose to consider tips that have a specific structure“X
: Y .” Both parts X and Y are short pieces of text. X defines
the goal of the tip, i.e., a specific situation for which ones
requires an actionable solution. Y defines the suggestion of
the tip, i.e., a proposed solution. The reason that we require
tips to have the above structure, is because we find it expres-
sive, easy for the user to parse and understand, and easier
for our algorithms to extract and match to queries. As we
mentioned before, tips are extracted from Yahoo! answers.
Given a 〈question, answer〉 pair from Yahoo! answers, the
‘question’ is used to construct the goal X and the ‘answer’
to construct the suggestion Y .

Section 5.1 describes the data set from which we extracted
our tips. Section 5.2 discusses the steps that were taken to
construct candidate tips. In Section 5.3 we give details of the
Crowdsource evaluation used to obtain ground-truth qual-
ity labels for a subset of candidate tips, which were then
used as training data for machine-learning techniques to fil-
ter out low-quality tips. Details are given in Section 5.4.
The performance results for this classification task are then
discussed in Section 5.5.
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5.1 Yahoo! answers dataset
We used data from Yahoo! Answers to extract candidate

tips. Concretely, we used all 〈question, best answer〉 pairs,
where the question was posted in the period between May
2006 and August 2010. Best answers are decided either (i)
by the asker, or (ii) by popular vote among Yahoo! Answers
users if the asker allows this, or (iii) automatically by the
system after a certain amount of time. We only used best
answers as we were interested in extracting high-quality tips,
while potentially sacrificing coverage. We further filtered the
data by requiring that the user who submitted the question
used the English-language front-end.

For questions, only the title was used; the additional and
optional information provided in the question description
was ignored. Similarly, for answers, we did not use the op-
tional reference field, which, when not empty, contains a jus-
tification for the given answer. We did, however, keep track
of its binary presence/absence and this was later used as a
feature in the machine-learning algorithms. Yahoo! Answers
also comes with a topical hierarchy and we recorded the first
two levels of this hierarchy for every 〈question, answer〉 pair.

We did not use any information about user points, which
are awarded for contributing answers, nor did we attempt
to detect key contributors. This was a deliberate choice in
order to make our approach applicable to other sites where
the contributor of a potential tip might not even be known.

5.2 Filtering and constructing tip candidates
From the initial set of 〈question, answer〉 pairs we con-

structed a set of candidate tips as follows.

First, we check that both the question and answer are in
English. Even though we only considered 〈question, answer〉
pairs where the question was submitted through an English
front-end to Yahoo! Answers, there was still a noticeable
fraction of questions and answers in languages such as Span-
ish, or languages spoken in India. To filter out non-English
content, we applied a stop-word-based language-detection
technique [13]. Concretely, we used the following list of En-
glish stop words: a, an, and, are, as, has, have, i, in, is, it,
me, my, not, of, or, that, the, they, to, was, we, were, will,
with, you, your. Any 〈question, answer〉 pair that contained
less than three instances of these tokens was removed from
further consideration.

Second, we only accept literal “how to” questions. We
only considered 〈question, answer〉 pairs where the question
started with “how to,”“how do i,” or “how can i.” This was
done for three reasons: First, such questions are typically
related to an actual problem or task, as opposed to opinion
questions such as“Why have our country’s politicians moved
so far to the extreme right?”8 or general knowledge questions
such as “How do wildfires affect the ozone layer?”9 Second,
the tips generated from such questions can later more easily
be matched against similarly structured web queries. Third,
limiting the scope to questions of the given structure made it
possible to convert passive “how to X?” questions into active
“To X : . . . ” pieces of advice. We also removed multi-part
questions. Some questions, such as “Does the truth set you
free, or does it simply hurt your feelings? And how do you
(usually) handle it?”10 are made of several sentences, which

8
http://yhoo.it/kR3lZ4

9
http://yhoo.it/mf5NX0

10
http://yhoo.it/ifn0jv

make the construction of tips very hard. We used simple
punctuation rules to keep only single-sentence questions.

Third, we required that the answer starts with a verb. We
observed that concrete pieces of advice typically start with a
verb in the imperative such as “Try this,”“Go there,” or “Do
that.” Remember again that our goal is to maximize preci-
sion, with a possible sacrifice in the coverage. We compiled
a dictionary of English verbs and we used only the infini-
tive of the verbs. Conveniently, in English the imperative
form of a verb agrees with its infinitive without the “to.”
Answers starting with “do you” or “have you” were ignored,
even though both of these verbs were in our dictionary.

We also experimented with a part-of-speech (POS) tag-
ger,11 to identify answers where the first token of an answer
was used as a verb. The performance of this POS-based
approach was very similar to the simple method described
above. In fact, due to malformed sentences, the POS-based
approach incurred a slightly lower recall. Hence, we de-
cided to stick with the simpler approach. We hypothesize
that for textual corpora that contain more “proper” English
and less online lingo and typos, POS-based methods and
other more “semantic” approaches are likely to outperform
the dictionary-based approach. Note that the use of an En-
glish verb dictionary provides additional filtering for non-
English questions or answers.

After these filtering steps, we are left with a set of 〈question,
answer〉 pairs to which we apply some syntactic transforma-
tions to the question, and construct a tip “X : Y ” by con-
catenating the transformed question with the answer. The
tip goal X is the transformed question, and the tip suggestion
Y is the answer of the given 〈question, answer〉 pair.

To transform the question, we first convert the questions
to active advice by replacing the initial “how (to |do i | can
i)” in the question by a simple “to.” Moreover, we transform
the question from ego-centered to user-centered. Questions
asked on Yahoo! Answers are often personal in nature and
users bring themselves into the question by making use of
first person pronouns such as I, my, me and so on. To turn
an ego-centered question (“How can I improve my X?”) into
a user-centered tip (“To improve your X: . . . ”) we replaced
all occurrences of I, my, me, am, ’m, myself, our, ours and
we with you, your, you, are, ’re, yourself, your, yours and
you. This replacement changed the tone of the tip from a
dialogue to a more objective piece of advice.

Finally, any candidate tip longer than 160 characters was
removed. There is a lot of motivation for doing this. First, it
makes it easier to display our tips on mobile devices. Second,
even on larger screens the “real estate” of a search result
page, is very limited. And third, we believe that users will
prefer to-the-point bits of advice, when they exist, over long
and intricate solutions.

Note that we did not consider information about the age
or recency of a tip. In some domains this might be a relevant
signal though as, say, the answer to “how to change the
default font in Microsoft Word” depends on the version of
the corresponding software which, in turn, depends on the
time when the query was issued and when a corresponding
tip was created.

Example: The question-answer pair “Q: How can I get
the mildew smell out of my towels? – A: Try soaking it

11
http://search.cpan.org/~acoburn/Lingua-EN-Tagger/

Tagger.pm
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Very good Ok Bad
Very good 12.4% 22.9% 4.8%

Ok – 25.7% 17.5%
Bad – – 16.6%

Table 5: Judge disagreement as computed by macro-
averaging over all (judgment, judgment) pairs on a
per-tip basis.

in a salt water solution, then washing with soap and cold
water, that tends to get rid of smells.”12 was converted to
the potential tip “To get the mildew smell out of your towels
: try soaking it in a salt water solution, then washing with
soap and cold water, that tends to get rid of smells.”

5.3 Judging the quality of the tip candidates
The process described above generated a total of 249 675

candidate tips. However, these candidate tips were of a very
mixed quality. In order to filter out tips of bad quality, we
set to build a classifier for tip quality. To obtain training
data for the classifier, we used the CrowdFlower13 interface
to Mechanical Turk.14

The workers were asked to label the quality of 20 000 can-
didate tips as “very good,”“ok,” or “bad.” Those 20 000 tips
were sampled uniformly at random from the set of 249 675
tips we constructed. The workers were given the following
instructions.

“Very good” : The tip should be concrete and non-obvious.
It may offer a likely solution for an issue.

“Ok” : The tip could be an opinion, it could be borderline
obvious or its correctness is doubtful.

“Bad” : The tip can be unintelligible, joke advice, insulting,
obviously wrong or crucial details are missing.

In addition to these short instructions, which were shown
above each tip to evaluate, there was also a similar set of
more explicit instructions which included four example for
each of the three classes.

One of the advantages of CrowdFlower are so called “gold
units,” which in our case are tips for which the correct qual-
ity judgment is known in advance. These “gold units” are
shown the workers at random intervals. If the workers’ an-
swers do not match the known correct response their trust
score deteriorates. If the trust score becomes too low, the
workers are excluded from further judgments and their pre-
vious judgments are ignored. To remove potential spammers
or low quality workers we used a total of 78 “gold units” (22
very good, 21 ok, 35 bad).

We obtained at least 3 trusted judgments for each of the
sampled 20 000 candidate tips. Applying a majority vot-
ing scheme, 25% of candidate tips were judged “very good,”
48% “ok,” and 27% “bad.” Table 5 gives details about the
inter-judge agreement. Note that there was very little dis-
agreement of the type“very good”vs.“bad”but a substantial
amount of disagreement between “very good” vs. “ok.”

12
http://yhoo.it/ClKuN

13
http://crowdflower.com/

14
https://www.mturk.com/mturk/welcome

5.4 Detecting high-quality tips using machine
learning

Our next step is to use the ground-truth labels we ob-
tained as training data in order to automatically detect
high-quality tips. As we were mostly interested in having
a high-precision classifier, we phrased the problem as a bi-
nary classification problem: can we separate the “very good”
tips from the “ok” and “bad” tips? We chose this approach
as we were less concerned about dropping a large fraction of
“ok” tips than showing “bad” tips.

In the experiments we used standard machine learning al-
gorithms: a support-vector machine with the RBF kernel,15

a support-vector machine with a linear kernel, a decision
tree,16 and a simple k-nearest-neighbor classifier with Eu-
clidean distance [3]. We made an effort to tune the param-
eters of each method to deliver best possible performance.
Both the SVM and decision tree were configured to penal-
ize more for misclassified instances of the negative (i.e., not
“very good”) class during training to increase precision.

We consider three types of features. The first feature set
(“terms”) is the tip-term matrix. This is a sparse matrix
containing the number of times a term appears in a tip. Only
terms occurring in at least 10 and at most 100K tips were
included. Due to the high-dimensionality this set of features
could not be used for all machine learning algorithms.

The second feature set (“topics”) is derived from the first
one. Here, we use the first singular vectors [25] of this matrix
as the set of features. These can be interpreted as “topics”
of a latent semantic space. More formally, if T is the n×m
tip-term matrix, we have T ≈ UhΛhVh, where h denotes the
number of singular values to use, Uh is an n× h matrix, Λh

is h × h, and Vh is h ×m. The topic-features are given by
the columns of the matrix Uh. In the experiments we set
h = 100.

The last set (“textual”) consists of various properties of the
question and answer, such as reading level and sentiment. A
few of these are specific to the question answering service,
but the majority are easy to compute from any text snippet.
To assess the quality of writing, we use the Flesch-Kincaid
reading level17 as computed by the “style” unix command.18

The sentiment of the tip, both positive and negative, is com-
puted using the SentiStrength19 tool [24]. See Table 10 for
further details.

5.5 Experimental evaluation
We evaluated all 9 combinations of the three classifica-

tion algorithms and three sets of features. Performance is
measured with precision and recall in two variants, hard
and soft. The hard variant measures how well the classifier
separates the class “very good” from the others. With the
soft variant the class “ok” is also considered as relevant. All
reported performance numbers are averages over stratified
10-fold cross-validation.

As can be seen in Table 7, differences among the classifiers
and feature sets are rather small. All methods achieve a
precision of at least 0.62 with at least one of the feature sets.

15LIBSVM: www.csie.ntu.edu.tw/~cjlin/libsvm/
16The classregtree function of Matlab’s Statistics Toolbox.
17
http://en.wikipedia.org/wiki/Flesch-Kincaid_

readability_test
18
http://www.gnu.org/software/diction/diction.html

19
http://sentistrength.wlv.ac.uk/
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Very good
To zest a lime if you don’t have a zester : use a cheese grater
To round a decimal in c : add 0.5 and then floor the value - what you call dropping the decimal. looks like this: int x = (my float + 0.5);
To access temporary internet files in windows vista : try clicking on start, run and then type in: %temp% and then press enter. cheers

Ok
To eliminate chapped lips : water water water, drink water alot, 8 and more glasses a day i use vaseline gel. it’s the best for me!
To forget about a horror movie : sing a song over and over again to stop your mind from thinking about it
To prevent getting gastro : wash hands frequently and don’t put them in nose/mouth/eyes.....

Bad
To make money at the age of 15 : hook up with your friends moms.
To make your computer super fast : tie it to the hood of your car and take it on the interstate
To you type a backwards e : use a 3. 3 look’s like it

Table 6: Examples of candidate tips for the three quality classes. Poor quality tips are later filtered out by
machine learning techniques (see Section 5.4).

Method terms topics textual

H
a
rd

SVM 0.62/0.36 0.56/0.24
linear SVM 0.61/0.39 0.67/0.30 0.59/0.16
tree 0.63/0.13 0.60/0.08
k-NN 0.65/0.14 0.64/0.20 0.57/0.18

S
o
ft

SVM 0.95/0.18 0.93/0.13
linear SVM 0.94/0.20 0.96/0.14 0.93/0.08
tree 0.96/0.07 0.93/0.04
k-NN 0.95/0.07 0.95/0.10 0.94/0.10

Table 7: Precision/recall for binary “very good” vs.
“not very good” classification of potential tips. In
the “soft” setting the evaluation was for “very good
or ok” vs. “bad” for the same binary “very good”
vs. “not very good” classifiers.

This is a good result, given that the fraction of the class“very
good” is roughly 0.24, and that recognizing good tips can be
a difficult problem even for humans. In the case of soft
evaluation all methods reach at least 0.94 precision, albeit
recall is now even lower. However, it must be emphasized
that when tips are shown together with web search results, it
is better to not show a tip than showing a tip of low quality.
For this study we chose linear SVM with terms features as
the combination to be used later when filtering good tips (a
total of 26.7k) from our set of candidate tips.

Table 8 shows the hard evaluation across different cate-
gories in Yahoo! answers. (Note that these are computed
from the training set!) First, the number of tips found in
a category varies a lot. Categories rich in possible tips are
e.g., “Computers & Internet” and “Family & Relationships,”
while tips about “Business & Finance” or “Society & Cul-
ture” are more rare. Also the fraction of “very good” tips
varies considerably across the categories. Finally, the clas-
sifier performs a lot better in some categories than others.
For example, despite the total fraction of tip candidates, as
well as the fraction of “very good” tips being rather low in
the“Entertainment & Music”category, the classifier achieves
0.63 precision. In summary, the difficulty of the classifica-
tion task clearly depends on the topic of the tip in question.

6. MATCHING TIPS TO WEB QUERIES
As a final step, we discuss how to put together the com-

ponents we described in the previous sections in order to

Category P,R VG size
Beauty & Style 0.52,0.06 0.16 0.08
Business & Finance 0.48,0.17 0.20 0.03
Cars & Transportation 0.81,0.11 0.23 0.03
Computers & Internet 0.69,0.44 0.45 0.15
Consumer Electronics 0.65,0.29 0.38 0.06
Entertainment & Music 0.63,0.32 0.15 0.05
Family & Relationships 0.64,0.05 0.06 0.14
Games & Recreation 0.65,0.34 0.24 0.04
Health 0.52,0.05 0.15 0.09
Home & Garden 0.39,0.05 0.27 0.04
Society & Culture 0.62,0.19 0.09 0.03
Sports 0.81,0.15 0.19 0.03
Yahoo! Products 0.73,0.53 0.45 0.07

Table 8: Category specific P(recision)/R(ecall)
(hard) in training data for the 13 categories with
the most tips, using a linear SVM with 100 topic
features. VG refers to the fraction of labeled “very
good” tips in the training data. Size refers to the to-
tal fraction of all identified high quality tips falling
into the corresponding class.

complete the design of our system. In particular, in this
step we show (i) how to decide which how-to queries to con-
sider, (ii) how to find tips for those queries, and (iii) how
to rank those tips. At heart, this is an information-retrieval
task, however, care should be taken in order to account for
the special structure of tips, their short length, and the fact
that displaying a tip is optional and subject to quality.

6.1 Deciding which web queries to consider
Which queries should we consider as candidates for show-

ing a tip? We decided to be fairly conservative and to even
consider showing a tip only if the query was judged as a
how-to query according to the “General-.10” approach (Sec-
tion 4.3). Our motivation was that for such queries the tip
could answer directly the underlying information need.

Note, however, that in many cases it might be interesting
to show“related tips,” even when no how-to intent is present.
For example, for the query “sour cream” one could display
the tip “To make fresh homemade sour cream : add a few
drops of lemon juice to double cream.”20 This type of display
would have more of a “Did you know . . . ?” flavor. It would

20
http://yhoo.it/meI2YV
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be interesting to evaluate through user studies how open
users are for such kinds of serendipitous bits of advice.

6.2 Deciding which tips to consider for a query
Assume that we have decided to consider a query as can-

didate for showing a tip. The next question is to find a set
of tips that could potentially be displayed in response to the
query. Note that this binary decision of “Should I show any-
thing at all?” does not arise in traditional web search where
the search engine is obliged to return matching results, if
any, even if they are of low quality.

For choosing a minimum“relatedness”threshold, there are
many choices. In a strict scheme, for a query “how to do X”
only tips of the form “To do X : . . . ” would be considered.
In this setting the query equals the goal of the tip.

Though this conservative approach has good precision (.72-
.92 depending on the evaluation setting, see Table 9), it suf-
fers on recall as it is overly conservative. To allow fuzzy
matches and improve recall, we experimented with two pa-
rameters. First, we experimented with both AND and OR
modes. In the AND mode all terms in the (normalized)
query have to appear in the goal part of the tip. In the OR
mode, partial matches are also counted. The first column
in Table 9 refers to the matching mode. Second, we experi-
mented with a parameter of matching span, which is defined
as the fraction of distinct tokens in the tip goal that appear
in the query. So, a minimum span of 0.5 requires at least
half of the tokens in the tip goal to be in the query. The
second column in Table 9 refers to this parameter.

We also experimented with matching using the whole text
of the tip, not just the goal. However, this led to displaying
tips that were only weakly related to the queries. We did not
experiment further with this approach as we were interested
in displaying answers to information needs, rather than“Did
you know . . . ?” bits of advice.

6.3 Ranking tips for a given query
Once a set of candidate tips has been identified for a given

query, a myriad of different ranking functions could be tried.
Note that we are only interested in displaying a single tip
and so precision at one (P@1) is a natural measure for the
quality of a ranking function.

We used a simple ranking function. We rank according
to the number of tokens in the query that are found in the
tip goal, normalized by the goal’s token length. Repeated
tokens in the query are counted repeatedly. Note that stop
words were previously removed. Ties were broken using tf-
idf with simple logarithmic idf. Remaining ties were bro-
ken by giving preference to longer tips.

We deliberately decided against using more advanced fea-
tures, such as the confidence of the classifier which labeled
the tip as “very good” or signals such as the Yahoo! Answers
point count of the person giving the underlying answer. This
was done to keep our approach as modular as possible and
work with arbitrary textual tips following the “To do X : try
Y” structure. We also decided against using tf-idf as the
primary ranking criteria as preliminary experiments showed
that this often led to the preference of a single, rare term
being present in both the query and the tip while giving too
little importance to tokens such as “ipod” which were very
common in our data set. Additionally, there were typically
only very few tips to rank due to the minimum span thresh-

mode span vol. dist. P@1 med. agr.
AND .50 10.0% 3.2% .497/.747 2 56%
AND .66 7.3% 2.2% .573/.840 2 49%
AND 1.0 4.5% 1.0% .717/.922 1 63%
OR .50 78.6% 85.6% .057/.137 2 87%
OR .66 33.5% 35.7% .132/.247 2 83%
OR 1.0 12.2% 10.2% .187/.394 2 56%

Table 9: The first two columns refer to different set-
tings for the (binary) decision of whether to include
a tip as a display candidate for a given query. Vol-
ume (vol.) and distinct (dist.) refer to the fraction
of General-.10 “how-to” queries for which a tip was
found. P@1 is the quality, averaged over 500 dis-
tinct (query, highest ranked tip) pairs. For the first
number only 2’s are counted as relevant, whereas
for the second number 1’s are also included. Me-
dian (med.) is the median number of display candi-
date tips to rank, when this set is non-empty. The
ranking function was the same in all cases and is
described in Section 6.3.

old of .5 (see Section 6.2 and Table 9), in particular with an
AND mode of query execution.

6.4 Experimental evaluation
We experimented with a total of six different parame-

ter configurations for determining whether a tip should be
shown for a query or not. For each of the six settings, 500
distinct (query, tip) pairs, sampled uniformly at random,
were evaluated by three different judges with 50 pairs being
evaluated by all three to estimate inter-judge agreement.

Judges were asked to evaluate the quality of the (query,
tip) match on a 3-point scale by judging if the tip is ...

2 – ... both closely related to the query and very useful in
addressing the user’s information need;

1 – ... at least somewhat related to the query and potentially
useful in addressing the user’s information need;

0 – ... either not related to the query or is not useful in
addressing the user’s information need.

Results are shown in Table 9. Note that this evaluation does
not only include the quality of the (query, tip) matching, but
also the quality of the tip itself. Similarly, if the query lacks
a how-to intent (e.g., “how to train your dragon”) this will
also hurt the performance.

7. RELATED WORK
This paper describes a system that (i) process a question-

answering corpus to create a large database of tips, (ii) iden-
tifies how-to queries from a web query log, and (iii) serves
those queries with tips. To our knowledge, this is a novel
task. In this section we discuss work that is related to vari-
ous components of our system.

Work on Yahoo! answers. We create a database of tips
by processing automatically questions and answers from Ya-
hoo! answers. Then we employ a machine-learning approach
to assess the quality of those tips and filter our tips of bad
quality. In the spirit of this task, Agichtein et al. [2] build
a machine-learning approach to assess quality of questions
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and answers in Yahoo! answers. Similarly, Bouguessa et
al. [6] apply link-analysis techniques to identify authorita-
tive users in Yahoo! Answers. Both of these works employ
user-centered and community-based features. In our work,
we made the conscious decision not to consider such features
to have our methods more generally applicable. Harper et
al. [11] investigate the problem of classiying questions into
informational vs. conversational and they observe that in-
formational questions have a higher archival value and are
more useful for future reference. They found that personal
pronouns are useful features in this distinction and we in-
cluded these in our feature set (see Table 10). In another
line of work, Adamic et al. [1], Surdeanu et al. [22], and
Kim and Oh [16] address the problem of finding automati-
cally the best answer to a question in Yahoo! answers. The
techniques and features used in all the above-mentioned pa-
pers could be potentially applied in our system in order to
select more questions and answers of good quality, and thus,
to enlarge our database of tips.

Question answering and databases of factoids. Con-
trasted with traditional information retrieval, where the goal
is to retrieve full documents, the problem of question an-
swering [18, 26] asks to locate possibly very fine-grained, tar-
geted answers to questions given by the user. At a high level
our work also falls in this framework, but there are impor-
tant differences to existing approaches to question answer-
ing. In particular, we are not concerned with constructing
an intermediary database of facts for assembling answers to
questions, as done e.g., by Hildebrand et al. [12] or Denicia-
Carral et al. [10]. Nor is our work about passage retrieval
[9, 23], as we are not direcly using passages of text as the
tips. A sophisticated passage retrieval system might also be
useful to find tips for how-to questions, but so far research
on passage retrieval has concentrated on factoid questions,
not procedural knowledge, and are thus not directly appli-
cable in our setting. Moreover, our system is inherently
designed to work with a keyword search engine, as we can
assign a how-to intent also to queries that are not explicitly
formulated as a question by the user. Finally, many Q&A
systems rely on proper punctuation but our approach also
works with imperfect user-generated content.

Also related is the recent paper by Bian et al. [5], where
the authors define the problem of question-answering re-
trieval, as the problem of retrieving high-quality question-
answer pairs, from a question-answering portal, in response
to a web query. This problem is again different than the one
we address in this paper in many ways. Most importantly,
we focus in how-to queries, and we provide a methodology
to identify such queries. Also we combine questions and
answers in a concise piece of advice that we call tip.

The idea of automatically extracting information from on-
line sources to build datasets of factoids is another active
area of research. A typical task in this line of work is on-
tolgy construction. Suchanek et al. [21] combine data from
Wikipedia and WordNet to automatically build a large scale
ontology of real world entities. Another popular application
domain is biology, with the objective of assisting curators
to mine different types facts from medical publications, in
particular entities, and relationships between these entities
[8, 27]. An important property that distinguishes our prob-
lem is that an ontology or any other database of factoids is
unlikely to be sufficient to construct answers how-to queries.

Our tips often describe a process that is not easily extracted
from relationships between entities.

Query-indent classification. A component of our system
is to automatically identify how-to queries. This component
is related to a line of work on query-intent classification.
Broder [7] defined a classification of web queries into three
categories: informational, transactional, and navigational.
Rose and Levinson [20] further extended the Broder’s tax-
onomy and introduced goal hierarchy. Following Broder’s
taxonomy, several authors have focused on the automatic
classification and characterization of user intent [14, 17]. In
a somewhat related work, Radlinski et al. [19] find popular
meanings of queries using web-search logs and user-click be-
havior. In our work, we do not aim to classify all queries in
a hierarchy of intents, instead we are focusing on only iden-
tifying how-to queries. Again, we view the line of work on
query-intent classification as complementary to our work, as
techniques from these papers can be potentially employed to
improve the accuracy of our query-identification task.

Existing services. The idea of serving tips for mobile de-
vices with a focus on local/geographical events has been used
in systems such as Foursquare21 and View.22 Differences be-
tween those services and our work are that (i) they do not
extract tips automatically, and (ii) they exclusively focus on
tips with a local/geographical context. So, for instance, they
would not provide any tips such as “To change the default
font in Microsoft Word do . . . .” The service most closely
related to our system is probably ClueDB.23 ClueDB allows
users to submit tips (called “clues”), vote, and comment on
each other’s tips. However, ClueDB does not make use of
any automatic extraction of tips but relies solely on a com-
munity effort. Even though we believe that a community of
tip curators could add significant value, we also claim that
automatic extraction of tips is a valuable tool to overcome
the cold-start problem. In our work we also address the
problem of matching queries to tips and ranking a set of
candidate tips.

8. CONCLUSIONS
In this paper, we described a modular system that extracts

high-quality tips from Yahoo! Answers and shows them as
a direct display for matching web queries. We believe that
such a system helps web search engines to differentiate them-
selves from competitors by providing“Answers, not Links”—
an often heard phrase concerning the future of web search.

In the future we hope to improve our system along a num-
ber of dimensions. First, each of the individual parts (how-
to identification, tip extraction, removal of low-quality tips,
selecting candidate tips for web queries, ranking those can-
didate tips) could be improved by (i) incorporating addi-
tional features and (ii) combining our techniques with ex-
isting ones. Second, it seems feasible to extract tips from
other data sources such as Twitter or travel sites. For Twit-
ter, tip-related hash tags could be a useful signal. For Travel
related and, in fact, arbitrary sites rules such as “Tips have
to start with a verb.” could be combined with part-of-speech
tagging to ensure that the supposed tip is self-contained and
does not refer to previous parts of text. Third, we would like
to identify other query types which could be addressed by

21
http://foursquare.com

22
http://view.io/

23
http://www.cluedb.com/
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(Y! Answers specific) has-reference: Indicates whether
the “reference” field in the answer was used. (Contents of
this field were not used when constructing tips!)
(Y! Answers specific) award-type: Indicates whether the
answer was selected “best answer” by the asker, by the com-
munity or automatically after a certain time.
word-in-tip: Occurrence counts for words in the tip that
appear in at least 10 and in at most 100,000 tips.
frequent-fraction: The fraction of words found in a fre-
quent word dictionary. We used a list of 2 126 distinct
words downloaded from http://www.paulnoll.com/Books/

Clear-English/English-3000-common-words.html to compute
the fraction of tokens that could be found in a dictionary of
common English words;
reading-level: Flesch-Kincaid reading level.
positive-sentiment-[q|a]: The positive sentiment of the
question according to SentiStrength.
negative-sentiment-[q|a]: The negative sentiment of the
question according to SentiStrength.
1st-person-singular-[q|a]: The case insensitive count of
“i”, “my” etc. appearing in the question.
1st-person-plural-[q|a]: The case insensitive count of
“we”, “our” etc. appearing in the question.
2nd-person-[q|a]: The case insensitive count of “you”,
“yours” etc. appearing in the question.
3rd-person-singular-[q|a]: The case insensitive count of
“he”, “she”, “his” etc. appearing in the question.
3rd-person-plural-[q|a]: The case insensitive count of
“they”, “theirs” etc. appearing in the question;
fraction-upper-case-[q|a]: Fraction of all uppercase
characters (A-Z) in the question.
repeated-?!-count-[q|a]: The count of sequences match-
ing /[!?]2,/
positive-emoticons-[q|a]: Number of emoticons from the
set “:-)”,“:)”, “;-)” and “;)”.
negative-emoticons-[q|a]: Number of emoticons from the
set “:-(” and “:(”.
url-count-[q|a]: Count for the regular expression /[a-z]3,
.(com|net|org|ca|uk)/ in the question.
token-count-[q|a]: Total number of tokens in the question
when splitting on all white spaces and sentence punctuation.

Table 10: Textual features. The notation [Q|A] in-
dicates that the feature appears separately for the
question and answer parts of the tip.

similar techniques. To identify relevant query classes we
envision applying a Jeopardy-like approach to answer the
question “What type of web query should this short piece of
text be returned to?”
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