
Type Less, Find More:
Fast Autocompletion Search with a Succinct Index

Holger Bast
Max-Planck-Institut für Informatik

Saarbrücken, Germany

bast@mpi-inf.mpg.de

Ingmar Weber
Max-Planck-Institut für Informatik

Saarbrücken, Germany

iweber@mpi-inf.mpg.de

ABSTRACT
We consider the following full-text search autocompletion
feature. Imagine a user of a search engine typing a query.
Then with every letter being typed, we would like an instant
display of completions of the last query word which would
lead to good hits. At the same time, the best hits for any
of these completions should be displayed. Known indexing
data structures that apply to this problem either incur large
processing times for a substantial class of queries, or they
use a lot of space. We present a new indexing data structure
that uses no more space than a state-of-the-art compressed
inverted index, but with 10 times faster query processing
times. Even on the large TREC Terabyte collection, which
comprises over 25 million documents, we achieve, on a single
machine and with the index on disk, average response times
of one tenth of a second. We have built a full-fledged, in-
teractive search engine that realizes the proposed autocom-
pletion feature combined with support for proximity search,
semi-structured (XML) text, subword and phrase comple-
tion, and semantic tags.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Meth-
ods; H.3.3 [Content Analysis and Indexing]: Retrieval
Models; H.5.2 [User Interfaces]: Theory and Methods

General Terms
Algorithms, Design, Experimentation, Human Factors, Per-
formance, Theory

Keywords
Autocompletion, Empirical Entropy, Index Data Structure

1. INTRODUCTION
Autocompletion is a widely used mechanism to get to a

desired piece of information quickly and with as little knowl-
edge and effort as possible. One of its early uses was in the
Unix Shell, where pressing the tabulator key gives a list of
all file names that start with whatever has been typed on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06, August 6–11, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

the command line after the last space. Nowadays, we find
a similar feature in most text editors, and in a large variety
of browsing GUIs, for example, in file browsers, in the Mi-
crosoft Help suite, or when entering data into a web form.
Recently, autocompletion has been integrated into a number
of (web and desktop) search engines like Google Suggest or
Apple’s Spotlight. We discuss more applications in Section
1.2.
In the simpler forms of autocompletion, the list of com-

pletions is simply a range from a (typically precomputed)
list of words. For the Unix Shell, this is the list of all file
names in all directories listed in the PATH variable. For the
text editors, this is the list of all words entered into the file
so far (and maybe also words from related files). In Google
Suggest, completions appear to come from a precompiled list
of popular queries. For these kinds of applications we can
easily achieve fast response times by two binary or B-tree
searches in the (pre)sorted list of candidate strings.
More advanced forms of autocompletion take into account

the context in which the to-be-completed word has been
typed. The problem we propose and discuss in this pa-
per is of this kind. The formal problem definition will be
given in Section 2. More informally, imagine a user of a
search engine typing a query. Then with every letter being
typed, we would like an instant display of completions of
the last query word which would lead to good hits. At the
same time, the best hits for any of these completions should
be displayed. All this should preferably happen in less time
than it takes to type a single letter. For example, assume
a user has typed conference sig. Promising completions
might then be sigir, sigmod, etc., but not, for example,
signature, assuming that, although signature by itself is
a pretty frequent word, the query conference signature
leads to only few good hits. See Figure 1 for a screenshot of
our search engine responding to that query. For a live demo,
see http://search.mpi-inf.mpg.de/wikipedia.

1.1 Our results
We have developed a new indexing data structure, named

HYB, which uses no more space than a state-of-the-art com-
pressed inverted index, and which can respond to autocom-
pletion queries as described above within a small fraction of
a second, even for collection sizes in the Terabyte range.
Our main competitor in this paper is the inverted index,

referred to as INV in the following. Other data structures
that could be directly applied to our problem either use a
lot of space or have other limitations; we discuss these in
Section 1.2.
We give a rigorous mathematical analysis of HYB and

INV with respect to both space usage and query processing
times. Our analysis accurately predicts the real behavior on
our test collections.
Concerning space usage, we define a notion of empirical

364

Figure 1: A screenshot of our search engine for the query conference sig searching the English Wikipedia.
The list of completions and hits is updated automatically and instantly after each keystroke, hence the absence
of any kind of search button. The number in parentheses after each completion is the number of hits that
would be obtained if that completion where typed. Query words need not be completed, however, because
the search engine does an implicit prefix search: if, for example, the user continued typing conference sig
proc, completions and hits for proc, e.g., proceedings, would be from the 185 hits for conference sig.

entropy [11] [22], which captures the inherent space com-
plexity of an index independent of a particular compression
scheme. We prove that the empirical entropy of HYB is
essentially equal to that of INV, and we find that the ac-
tual space usage of our implementation of the two index
structures is indeed almost equal, for each of our three test
collections.
Concerning processing times, we give a precise quantifi-

cation of the number of operations needed, from which we
derive bounds for the worst, best, and average-case behav-
ior of INV and HYB. We also take into account the different
latencies of sequential and random access to data [1].
We compare INV and HYB on three test collections with

different characteristics. One of our collections has been
(semi-)publicly searchable over the last year, so that we have
autocompletion queries from real users for it. Our largest
collection is the TREC Terabyte benchmark with over 25
million documents [7].
On all three collections and on all the queries we con-

sidered, HYB outperforms INV by a factor of 15 − 20 in
worst-case query processing time, and by a factor of 3− 10
in average case query processing time. In absolute terms,
HYB achieves average query processing of one tenth of a
second or less on all collections, on a single machine and
with the index on disk (and not in main memory).
We have built a full-fledged search engine that supports

autocompletion queries of the described kind combined with
support for proximity/phrase search, XML tags, subword
and phrase completion, and category information. All of
these extensions are described in Section 4.

1.2 Related work
The autocompletion feature as described so far is remi-

niscent of stemming, in the sense that by stemming, too,
prefixes instead of full words are considered [23]. But unlike
stemming, our autocompletion feature gives the user feed-

back on which completions of the prefix typed so far would
lead to highly ranked documents. The user can then assess
the relevance of these completions to his or her search de-
sire, and decide to (i) type more letters for the last query
word, e.g., in the query from Figure 1, type i and r so that
the query is then conference sigir, or to (ii) start with
the next query word, e.g., type a space and then proc, or
to (iii) stop searching as , e.g., the user was actually look-
ing for one of the hits shown in Figure 1. There is no way
to achieve this by a stemming preprocessing step, because
there is no way to foresee the user’s intent. This kind of user
interaction is well known to improve retrieval effectiveness
in a variety of situations [21].
While our autocompletion feature is for the purpose of

finding information, autocompletion has also been employed
for the purpose of predicting user input, for example, for
typing messages with a mobile phone, for users with disabil-
ities concerning typing, or for the composition of standard
letters [6] [14] [20] [8] [15]. In [12], contextual information
has been used to select promising extensions for a query.
Paynter et al. have devised an interface with a zooming-in
property on the word level, and based on the identification
of frequent phrases [18]. We get a related feature by the
subword/phrase-completion mechanism described in Section
4.4.
Our autocompletion problem is related to but distinctly

different from multi-dimensional range searching problems,
where the collection consists of tuples (of some fixed dimen-
sion, for example, pairs of word prefixes), and queries are
asking for all tuples that match a given tuple of ranges [10]
[2] [4] [13]. These data structures could be used for our auto-
completion problem, provided that we were willing to limit
the number of query words. For fast processing times, how-
ever, the space consumption of any of these structures is on
the order of N1+d, where N is the size of an inverted index,
and d > 0 grows (fast) with the dimension. For our au-

365

tocompletion queries, we can achieve fast query processing
times and space efficiency at the same time because we have
the set of documents matching the part of the query before
the last word already computed (namely when this part was
being typed). In a sense, our autocompletion problem is
therefore a 1 1/2 - dimensional range searching problem.
Finally, there is a large variety of alternatives to the in-

verted index in the literature. We have considered those we
are aware of with regard to their applicability to our au-
tocompletion problem, but found them either unsuitable or
inferior to the inverted index in that respect. For example,
approaches that consider document by document are bound
to be slow due to a poor locality of access; in contrast, both
INV and HYB are mostly scanning long lists; see Section
3. Signature files were found to be in no way superior (but
significantly more complicated) to the inverted index in all
major respects in [24]. Suffix arrays and related data struc-
tures address the issue of full substring search, which is not
what we want here (but see Section 4.4); a direct application
of a data structure like [11] would have the same efficiency
problems as INV, whereas multi-dimensional variants like
[10] require super-linear space, as explained above.

2. FORMAL PROBLEM DEFINITION AND
DEFINITION OF EMPIRICAL ENTROPY

The following definition of our autocompletion problem
takes neither positional information, nor ranking of the com-
pletions or of the documents into account. We will first, in
Section 3, analyze our data structures for this basic setting.
In Section 4, we then show how to generalize the data struc-
tures and their analysis to cope with positional information,
ranking, and a number of other useful enhancements. This
generalization will be straightforward.

Definition 1. An autocompletion query is a pair (D, W),
where W is a range of words (all possible completions of the
last word which the user has started typing) and D is a set
of documents (the hits for the preceding part of the query).
To process the query means to compute the subset W ′ ⊆ W
of words that occur in at least one document from D, as well
as the subset D′ ⊆ D of documents that contain at least one
of these words.

For our example conference sig, D is the set of all doc-
uments containing a word starting with conference (com-
puted when the last letter of this word was typed), and W
is the range of all words from the collection starting with
sig. For queries with only a single word, e.g., confer, D is
simply the set of all documents.
To analyze the inherent space complexity of INV and HYB

independently of the specialties of a particular compression
scheme, we introduce a notion of empirical entropy. Both
INV and HYB are essentially a collection of (multi)sets and
sequences. The following definition gives a natural notion
of entropy for each such building block, and for arbitrary
combinations of them (similar definitions have been made in
[11] [22]). The reader might first want to skip the following
definition and come back to it when it is first used in the
analysis that follows.

Definition 2. We define empirical entropy for the fol-
lowing entities, where H(p1, . . . , pl) = −Pl

i=1(pi · log2 pi) is
the l-ary entropy function.

(a) For a subset of size n′ with elements from a universe of
size n, the empirical entropy is n ·H(n′/n, 1−n′/n) (include
each element of the universe into the subset with probability
n′/n), which is

n′ · log2

n

n′ + (n − n′) · log2

n

n − n′ .

(b) For a multisubset of size n′ with elements from a uni-
verse of size n, the empirical entropy is (n+n′) ·H(n′/(n+
n′), n/(n+ n′)) (consider a bitvector of size n+ n′, and let
a bit be 0 with probability n′/(n + n′) and 1 otherwise; the
prefix sums at the 0-bits give the multisubset), which is

n′ · log2
n+ n′

n′ + n · log2
n+ n′

n
.

(c) For a sequence of n elements from a universe of size l,
where the ith element occurs ni times (n1+· · ·+nl = n), the
empirical entropy is n·H(n1/n, . . . , nl/n) (for each position,
pick element i with probability ni/n), which is

n1 · log2
n

n1
+ · · ·+ nl · log2

n

nl
.

(d) For a collection of l entities with empirical entropies
H1, . . . ,Hl, the empirical entropy is simply H1 + · · ·+Hl.

3. INV, HYB, AND THEIR ANALYSIS
In this section we will describe INV and HYB, and analyze

them with respect to their empirical entropy and their pro-
cessing time for autocompletion queries according to Defini-
tion 1. Query processing times will be quantified in terms of
all relevant parameters; from this we can easily derive worst-
case, best-case, and average-case bounds. Our average-case
bounds make simplifying assumptions on the distribution of
words in the documents, but nevertheless turn out to predict
the actual behavior quite well. Implementation issues and
the actual performance of our implementations of INV and
HYB will be discussed in Section 5. We briefly comment on
index construction times in Section 3.3

3.1 The inverted index (INV)
The inverted index is the data structure of choice for most

search applications: it is relatively easy to implement and
extend by other features, it can be compressed well, it is very
efficient for short queries, and it has an excellent locality of
access [23]. In this paper, by INV we mean the following
data structure: for each word store the list of all (ids of)
documents containing that word, sorted in ascending order.
We do not consider enhancements such as skip pointers [17],
which we would expect to give similar benefits for both INV
and HYB, however at the price of an increased space us-
age. In the following, we first estimate the inherent space
efficiency (empirical entropy) of INV. We then analyze the
time complexity of processing autocompletion queries with
INV, and point out two inherent problems.

Lemma 1. Consider an instance of INV with n documents
and m words, and where the ith words occurs in ni distinct
documents (so that n1 + · · · + nm is the total number of
word-in-document pairs). Let Hinv be the empirical entropy
according to Definition 2. Then

Hinv ≤
mX

i=1

„
ni · 1

ln 2
+ ni · log2

n

ni

«
,

and for all collections considered in this paper (where most
ni are much smaller than n) this bound is tight up to 2%.

Proof. According to Definition 2 (a) and (d), we have

Hinv =

mX
i=1

„
ni · log2

n

ni
+ (n − ni) · log2

n

n − ni

«
.

To prove the lemma, it suffices to observe that because 1 +
x ≤ ex for any real x,

(n − ni) · log2
n

n − ni
=

n − ni

ln 2
· ln
„
1 +

ni

n − ni

«
≤ ni

ln 2
.

366

Lemma 1 tells us that if the documents in each list were
picked uniformly at random, then a Golomb-encoding of the
gaps [23] from one document id to the next (for list i, the
expected size of a gap would be n/ni) would achieve a space
usage very close to Hinv bits. In our implementation, we
opted to encode gaps with the Simple-9 encoding from [3],
which is easy to implement, yet achieves very fast decom-
pression speeds at the price of only a moderate loss in com-
pression efficacy; details are reported in Section 5.

Lemma 2. With INV, an autocompletion query (D, W)
can be processed in the following time, where Dw denotes
the inverted list for word w:

|D| · |W |+
X

w∈W

|Dw|+
X

w∈W

|D ∩ Dw| · log |W |.

Assuming that the elements of W , D, and the Dw are picked
uniformly at random from the set of m words and the set of
n documents, respectively, this bound has an expected value
of

|D| · |W |+ |W |
m

· N +
|D|
n

· |W |
m

· N · log |W |.

Remark. By picking the elements of a set S at random from
a set U , we mean that each subset of U of size |S| is equally
likely for S. We are not making any randomness assumption
on the sizes of W , D, and Dw above.

Proof sketch. The obvious way to use an inverted in-
dex to process an autocompletion query (D, W) is to com-
pute, for each w ∈ W , the intersections D ∩ Dw . Then,
W ′ is simply the set of all w for which the intersection was
non-empty, and D′ is the union of all (non-empty) intersec-
tions. The intersections can be computed in time linear in
the total input volume

P
w∈W (|D|+ |Dw |).1 The union can

be computed by a |W |-way merge, which requires on the
order of log |W | time per element scanned. With the ran-
domness assumptions, the expected size of Dw is N/m, and
the expected size of |D ∩ Dw| is |D|/n · N/m.

Lemma 2 highlights two problems of INV. The first is
that the term |D| · |W | can become prohibitively large: in
the worst case, when D is on the order of n (i.e., the first
part of the query is not very discriminative) and W is on
the order of m (i.e., only few letters of the last query word
have been typed), the bound is on the order of n ·m, that is,
quadratic in the collection size. The second problem is due
to the required merging. While the volume

P
w∈W |D∩Dw |

will typically be small once the first query word has been
completed, it will be large for the first query word, especially
when only few letters have been typed. As we will see in
Section 5, INV frequently takes seconds for some queries,
which is quite undesirable in an interactive setting, and is
exactly what motivated us to develop a more efficient index
data structure.

3.2 Our new data structure (HYB)
The basic idea behind HYB is simple: precompute inverted

lists for unions of words. Assume an autocompletion query
(D, W), where the union of all lists for word range W have
been precomputed. We would then get D′ with a single
intersection (of D with the precomputed list). However,
from this precomputed list alone we can no longer infer the
set W ′ of completions leading to a hit. Since W can be an
arbitrary word range, it is also not clear which unions should

1There are asymptotically faster algorithms for the inter-
section of two lists [5], but in our experiments, we got the
best results with the simple linear-time intersect, which we
attribute to its compact code and perfect locality of access.

be precomputed, especially when we do not want to use more
space than an (optimally compressed) inverted index.
The analysis given in this section suggests the following

approach: group the words in blocks so that the lengths of
the inverted lists in each block sum to (approximately) c ·n,
for some constant c < 1 (we will later choose c ≈ 0.2). For
each block, store the union of the covered inverted lists as a
compressed multiset, using an effective gap encoding scheme
just as done for INV (repetitions of the same element in the
multiset correspond to a gap of zero). In parallel to each
multiset, for each element x store the id of the word that
led to the inclusion of (this occurrence of) x in the multiset.
This gives a sequence of word ids, the length of which is
exactly the size of the multiset. Encode these word ids with
code length (approximately) log2((n1+ · · ·+nl)/ni) for the
ith word, where ni is the number of documents containing
the ith word, and l is the number of words in the respective
block.
Here is an example. Let one of the blocks comprise four

words A, B, C, and D, with inverted lists

A : 3, 5, 6, 8, 9, 11, 12, 15
B : 5, 11
C : 3, 7, 11, 13
D : 3, 8

We would then like to store, in compressed form, the multi-
set (of document ids) and the sequence (of word ids)

3 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15
A C D A B A C A D A A B C A C A

The optimal encoding of the words A, B, C, D would use
code lengths log2(16/8) = 1, log2(16/2) = 3, log2(16/4) = 2,
log2(16/2) = 3, respectively, for example A = 0, B = 110,
C = 10, D = 111. An optimal encoding of the four gaps
0, 1, 2, 3 that occur in the above multiset of document ids
would be 0, 10, 110, 111, respectively. What we actually
store are then the two bit vectors (where the | are solely for
better readability; the codes in this example are prefix-free)

111|0|0|110|0|10|10|10|0|10|110|0|0|10|10|110
0|10|111|0|110|0|10|0|111|0|0|110|10|0|10|0

Note that due to the two different encodings the two lists
end up having different lengths in compressed form, and this
is also what will happen in reality.
The following analysis will make very clear that (i) one

should choose blocks of equal list volume (and not, for ex-
ample, of equal number of words), (ii) this volume should be
a small but substantial fraction of the number of documents
(and neither smaller nor larger), and (iii) the lists of doc-
ument ids should be “gap-encoded” while the lists of word
ids should be “entropy-encoded”.
As for the space usage, we will first derive a very tight

estimate of the entropy of HYB, and then show that, some-
what surprisingly, if we only choose the block volume to be
a small enough fraction of the number of documents, the
entropy of HYB is almost exactly that of INV.
We will then show how HYB, when the blocks are chosen

of sufficiently large volume, can be used to process autocom-
pletion queries in time linear in the number of documents,
for any reasonable word range. Since HYB essentially scans
long lists, without the need for any merging, except when
the word range is huge, it also has an excellent locality of
access.

Lemma 3. Consider an instance of HYB with n words
and m documents, where the ith word occurs in ni docu-
ments, and where for each block the sum of the ni with i
from that block is c · n, for some c > 0. Then the empirical

367

entropy Hhyb, defined according to Definition 2, satisfies

Hhyb ≤
mX

i=1

„
ni · 1 + c/2

ln 2
+ ni · log2

n

ni

«
,

and the bound is tight as c → 0.

Proof. Consider a fixed block of HYB, and let ni denote
the number of documents containing the ith word belonging
to that block. Throughout this proof, let

P
i ni denote the

sum over all these ni (so that the sum over all
P

i ni from
all blocks gives the

Pm
i=1 ni from the lemma). According to

Definition 2 (b), (c), and (d), the empirical entropy of this
block is thenP

i ni·log2

n+
P

i niP
i ni

+n·log2

n+
P

i ni

n
+
X

i
ni log2

P
i ni

ni
.

Now adding the first and the last term, the arguments of
the logarithms partially cancel out (!), and we get

X
i
ni · log2

n+
P

i ni

ni
+ n · log2

n+
P

i ni

n
.

Now using that, by assumption,
P

i ni = c · n, we obtain
X

i
ni

„
(1 + 1/c) log2(1 + c) + log2

n

ni

«
.

Since (1+1/c) ln(1+ c) ≤ 1+ c/2 for all c > 0 (not obvious,
but true), we can upper bound this (tightly, as c → 0) by

X
i
ni

„
1 + c/2

ln 2
+ log2

n

ni

«
.

This bounds the empirical entropy of a single block of HYB
(the sum goes over all words from that block). Adding this
over all blocks gives us the bound claimed in the lemma.

Comparing Lemma 3 with Lemma 1, we see that if we let
the blocks of HYB be of volume at most c ·n, for some small
fraction c, then the empirical entropy of HYB is essentially
that of an inverted index. In Section 4.2, we will see that
when we take positional information into account, the em-
pirical entropy of HYB actually becomes less than that of
INV, for any choice of block volumes.
In our implementation of HYB, we compress the lists of

document ids by a Simple-9 encoding of the gaps, just as
described for INV above. For the lists of word ids, entropy-
optimal compression could be achieved by arithmetic encod-
ing [23], but for efficiency reasons, we compress word ids as
follows: assuming that the word frequencies in a block have
a Zipf-like distribution, it is not hard to see that a universal
encoding with ∼ log x bits for number x [17] of the ranks
of the words, if sorted in order of descending frequency, is
entropy-optimal, too. We again opted for Simple-9 encod-
ing of these ranks, which gives us a reasonable compression
and very fast decompression speed, without the need for any
large codebook. We take block sizes as n/5, but also take
word/prefix boundaries into account such that frequent pre-
fixes like pro, com, the get a block on their own. This is to
avoid that a query unnecessarily spans more than one block.

Lemma 4. Using HYB with blocks of volume N ′, auto-
completion queries (D, W) can be processed in the following
time, where Dw is the inverted list for word w

X
w∈W

|Dw |·(1+|D|/N ′)+
X

w∈W

|D∩Dw |·log
 X

w∈W

|Dw |/N ′
!

.

For N ′ = Θ(n) and |W | ≤ m · n/N , and assuming that the
elements of D, Dw, and W are picked uniformly at random

from the set of all n documents or all m words, respectively,
the expected processing time is bounded by O(n).

Proof sketch. According to Definition 1, we have to
compute, given (D, W), the set W ′ of words from W con-
tained in documents from D, as well as the set D′ of doc-
uments containing at least one such word. For each block
B, a straightforward intersection of the given D with the
list of document-word pairs from B, gives us the set W ′

B of
all words from W ′ from block B, as well as the set D′

B of
all document from D′ which contain a word from B. From
these, D′ can be computed by a k-way merge, where k is
the number of blocks that contain a word from W , and W ′

can be computed by a simple linear-time sort into W buck-
ets (because W is a range). The number k of blocks isP

w |Dw |/N ′, which is O(1) in expectation, given the ran-
domness assumptions stated in the lemma.

3.3 Index construction time
While getting from a collection of documents (files) to

INV is essentially a matter of one big external sort [23],
HYB does not require a full inversion of the data. For our
experiments, however, we built the compressed indices for
both INV and HYB from an intermediate fully inverted text
version of the collection, which takes essentially the same
time for both.

4. EXTENSIONS
In this section, we describe a number of extensions of the

basic autocompletion facility we have described and ana-
lyzed so far. The first (ranking) is essential for practical
usability, the second (proximity search) greatly widens the
spectrum of search tasks for which autocompletion can be
useful, and the others (support for XML tags, subword and
phrase completion, and semantic tags) give advanced search
facilities to the expert searcher.

4.1 Ranking
So far, we have considered the following problem (from

Definition 1): while the user is typing a query, compute
after each keystroke the list of all completions of the last
query word that lead to at least one hit, as well as the list of
all hits that would be obtained by any of these completions.
In practice, only a selection of items from these lists can

and will be presented to the user, and it is of course crucial
that the most relevant completions and hits are selected.
A standard approach for this task in ad-hoc retrieval is to

have a precomputed score for each word-in-document pair,
and when a query is being processed, to aggregate these
scores for each candidate document, and return documents
with the highest such aggregated scores [23].
Both INV and HYB can be easily adapted to implement

any such scoring and aggregation scheme: store by each
word-in-document pair its precomputed score, and when in-
tersecting, aggregate the scores. A decision has to be made
on how to reconcile scores from different completions within
the same document. We suggest the following: when merg-
ing the intersections (which gives the set D′ according to
Definition 1), compute for each document in D′ the maxi-
mal score achieved for some completion in W ′ contained in
that document, and compute for each completion in W ′ the
maximal score achieved for a hit from D′ achieved for this
completion.
Asymptotically, the inclusion of ranking does not affect

the time bounds derived in Lemmas 2 and 4, and our exper-
iments show that ranking never takes more than half of the
total query processing time; see Section 5.4. The increase in
space usage depends on the selected scoring scheme, and is
the same for INV and HYB. It is for these reasons, that we
factored out the ranking aspect from our basic Definition 1

368

and from our space and time complexity analysis in Section
3.

4.2 Proximity/Phrase searches
With a properly chosen scoring function, such as BM25,

mere ranking by score aggregation often gives very satisfac-
tory precision/recall behavior [19]. There are many queries,
however, where the decisive cue on whether a particular doc-
ument is relevant or not lies in the fact whether certain of
the query words occur close to each other in that document.
See [16] for a recent positive result on the use of proximity
information in ad-hoc retrieval.
Our autocompletion feature increases the benefits of a

proximity operator, because the use of this operator will
strongly narrow down the list of completions displayed to
the user, which in turn makes it easier for the user to filter
out irrelevant completions. For example, when searching the
Wikipedia collection the most relevant completion for the
non-proximity query max pl would be place (because max
and place are both frequent words), but for the proximity
query max..pl it is planck. Here the two dots .. indicate
that words should occur within x words of each other, for
some user-definable parameter x.
It is not hard to extend both INV and HYB to support

proximity search: in the document lists (INV and HYB) as
well as in the word lists (HYB only), we duplicate each entry
as many times as it occurs in the corresponding document,
and store the positions in a parallel array of the same size.
Word and document lists are compressed just as before, and
the lists of positions are gap-encoded by Simple-9, just like
the lists of document ids. The intersection routine is adapted
to consider a proximity window as an additional parameter.
As we will see in Section 5.3, the position lists increase the

index size by a factor of 4-5, for both INV and HYB (without
any kind of stopword removal). We can extend our analysis
from Section 3 to predict this factor as follows. If we replace
ni, the number of documents containing the ith word, by
Ni, the total number of occurrences of the ith words, and n,
the number of documents, by N , the total number of word
occurrences, we can show that (details omitted)

Hhyb∗ ≤ Hinv∗ ≤
mX

i=1

(Ni/ ln 2 +Ni · log2(N/Ni)) ,

where Hinv∗ and Hhyb∗ denote the empirical entropy of
INV and HYB, respectively, with positional information.
That is, with positional information, HYB is always more
space-efficient than INV, irrespectively of how we divide into
blocks. It can be shown thatNi·log2(N/Ni) ≈ 2Ni·log2(n/ni),
and since on average a word occurs about 2-3 times in a doc-
ument, this is just 4-5 times ni log2(n/ni), which was the
corresponding term in the entropy bound for INV or HYB
without positional information (Lemmas 1 and 3).

4.3 Semistructured (XML) text
Many documents contain semantic information in the form

of tag pairs. We briefly sketch how we can make good use
of such tags in our autocompletion scenario. Assume that
in the archive of a mailing list, the subject of a mail is en-
closed in a <subject> . . . <\subject> tag pair. We can then
easily implement an operator = (in a way very similar to
our implementation of the proximity operator), such that
for a query subject=sig only those completions of sig are
displayed which actually occur in the subject line of a mail,
and only such documents are displayed as hits.

4.4 Completion to subwords and phrases
Another simple yet often useful extension to the basic

autocompletion feature is to consider as potential matches
not only the words as they occur in the collection, but also

meaningful subwords and phrases. An example involving
a subword: for the query normal..vec we might want to
see eigenvector as one of the relevant completions. An
example involving a phrase: for the query max planck we
might want to see the phrase max planck institute as one
of the relevant completions. It is not hard to see, that the
autocompletion according to Definition 1 will automatically
provide this feature if only we add the corresponding sub-
words/phrases to the index.

4.5 Category information
Our autocompletion feature can be combined with a num-

ber of other technologies that enhance the semantics of a
corpus. To give just one more example here, assume we
have tagged all conference names in a collection. Then as-
sume we duplicate all conference names in the index, with
an added prefix of, say, conf:, e.g., conf:sigir. By the way
our autocompletion works, for the query seattle conf: we
would then get a list of all names of conferences that occur
in documents that also mention Seattle.

5. EXPERIMENTS
We implemented both INV and HYB in compressed for-

mat, as described in Sections 3.1 and 3.2. Each index is
stored in a single file with the individual lists concatenated
and an array of list offsets at the end. The vocabulary
(which is the same for INV as for HYB) is stored in a sepa-
rate file. All our code is in C++. All our experiments were
run on a Dual Opteron machine, with 2 Intel Xeon 3 GHz
processors, 8 GB of main memory, and running Linux. We
ensured that the index was not cached in main memory.

5.1 Test collections
We compared the performance of INV and HYB on three

collections of different characteristics. The first collection is
a mailing-list archive plus several encyclopedias on home-
opathic medicine (www.homeonet.org). This collection has
been searchable via our engine over the past year by an
audience of several hundred people. The second collection
consists of the complete dumps of the English and German
Wikipedia from December 2005 (search.mpi-inf.mpg.de/
wikipedia). The third collection is the large TREC Ter-
abyte collection [7], which served as a stress test for our in-
dex structures (and for the authors as well). Details about
all three collection are given in Table 1, where the “Raw
size” of a collection is the total size of the original, uncom-
pressed files in their original formats (e.g., HTML or PDF).

5.2 Queries
For the Homeopathy collection, we picked 5,732 maximal

queries (that is, queries, which are not a true prefix of an-
other query) from a fixed time slice of our query log for
that collection. From each of these maximal queries, a se-
quence of autocompletion queries was generated by “typ-
ing” the query from left to right, with a minimal prefix
length of 3. Like that, for example, the maximal query
acidum phos gives rise to the 6 autocompletion queries aci,
acid, acidu, acidum, acidum pho, and acidum phos. For
the Wikipedia collection, autocompletion queries were gen-
erated in the same manner from a set of 100 randomly gen-
erated queries, with a distribution of the number of query
words and of the term frequency similar to that of the real
queries for the Homeopathy collection. For the Terabyte col-
lection, autocompletion queries were generated, in again the
same way but with a minimal prefix length of 4, from the
(stemmed) 50 ad-hoc queries of the Robust Track Bench-
mark [7], e.g., squirrel control protect. For all three
collections, we removed queries containing words that had
no completion at all in the respective collection.

369

For Homeopathy and Wikipedia, all queries were run as
proximity queries (using a full positional index according to
Section 4.2), while for Terabyte, they were executed as ordi-
nary document-level queries. For all collections, both com-
pletions and hits were ranked as we described it in Section
4.1 (details of the aggregation function are omitted here).
Each autocompletion query was processed according to

Definition 1, e.g., for acidum pho, we compute all comple-
tions of pho that occur in a document which also contains
a word starting with acidum, as well as the set of all such
documents. The result for each autocompletion query is re-
membered in a history, so that we do not need to recompute
the set of documents matching the first part of the query.
E.g., when processing acidum pho, we can take the set of
documents matching acidum from the history; see the ex-
planation following Definition 1.
The autocompletion queries with minimal prefix lengths,

like aci and acidum pho for Homeopathy, are the most diffi-
cult ones. All other queries can be easily processed by what
we call filtering. For example, both the completions and hits
for the query acidum phos can be obtained by retrieving the
list of matching word-in-document pairs for the previously
processed query acidum pho from the history, and by filter-
ing out, in a linear scan over that list, all those pairs, where
the word starts with phos. In practice, this is always faster
than processing such queries as full autocompletion queries
according to Definition 1. Note that this filtering is identi-
cal for INV and HYB. We nevertheless include the filtered
queries in our experiments, because in reality we will always
get a mix of both kinds of queries. Table 3 will provide
figures for just the difficult (unfiltered) queries. We remark
that the history is useful also for caching purposes, but in
our experiments we used it solely for the purpose of filtering.

5.3 Index space
Table 1 shows that INV and HYB use essentially the same

space on all three test collections, and that HYB is slighter
more compact than INV for a full positional index. This is
exactly what Lemmas 1 and 3, and the derivation in Section
4.2 predicted! The sizes for both INV and HYB exceed that
predicted by the empirical entropy by about 50%. This is
due to our use of the Simple-9 compression scheme, which
trades very fast decompression time for about this increase
in space usage [3]. A combination of Golomb and arith-
metic encoding would give us a space usage closer to the
empirical entropy. However, decompression would then be-
come the computational bottleneck for almost all queries,
see Table 3. We remark that, by the way we did our analy-
sis, any new compression scheme with improved compression
ratio/decompression speed profile, would immediately yield
a corresponding improvement for both INV and HYB.

5.4 Query processing time
Table 2 shows that in terms of query processing time,

HYB outperforms INV by a large margin on all collections.
With respect to maximum processing time, which is espe-
cially critical for an interactive application, the improvement
is by a factor of 15-20. With respect to average processing
time, which is critical for throughput in a high-load scenario,
the improvement is by a factor of 3-10.
Table 3 gives interesting insights into where exactly INV

loses against HYB. The table shows a breakdown of the
running times of those queries for the Terabyte collection,
which were not answered by filtering as discussed above.
(Note that the breakdown of the filtered queries would be
identical for both methods.) The table differentiates be-
tween 1-word queries like squi, squir, etc. and multi-word
queries like squirrel contr or squirrel control prot.
For the 1-word queries, no intersections have to be com-

puted for either INV or HYB. According to Lemma 2, the

Collection Homeopathy Wikipedia Terabyte

Raw size 452 MB 7.4 GB 426 GB

#documents 44,015 2,866,503 25,204,103

#words 263,817 6,700,119 25,263,176

#items 12 [27] million 0.3 [0.8] billion 3.5 billion

Vocabulary 2.9 MB 73 MB 239 MB

Entropy 6.6 [13.1] bits 9.1 [14.0] bits 8.4 bits

INV

index size 13 [70] MB 0.5 [2.2] GB 4.6 GB

-per item 9.3 [21.5] bits 12.8 [23.2] bits 11.0 bits

HYB

index size 14 [62] MB 0.5 [2.0] GB 4.9 GB

-per item 9.4 [19.2] bits 13.0 [20.7] bits 11.6 bits

-per doc 3.9 [15.4] bits 4.3 [14.8] bits 5.9 bits

-per word 5.5 [3.8] bits 8.7 [5.9] bits 5.7 bits

Table 1: Properties of our three test collections, and
the space consumption of INV versus HYB. The en-
tries in square brackets are for a full positional in-
dex, without any word whatsoever removed.

Collection Method mean 90% 99% max

Homeopathy
INV 0.033 0.038 0.384 12.27

HYB 0.003 0.008 0.026 0.065

Wikipedia
INV 0.171 0.143 2.272 22.66

HYB 0.055 0.158 0.492 1.085

Terabyte
INV 0.581 0.545 16.83 28.84

HYB 0.106 0.217 0.865 1.821

Table 2: Average, 90%-ile, 99%-ile and maximum
processing times in seconds for INV versus HYB on
our three test collections.

merging of the intersections then dominates for INV, and
this indeed shows in the first column of Table 3. For multi-
word queries, the result volume

P
w |D∩Dw | (Lemmas 2 and

4) goes down, and, according to Lemma 2, the intersection
costs dominate for INV, which shows in the third column
of Table 3. In contrast, columns two and four demonstrate
that HYB achieves a better balance of the costs for reading,
uncompressing, and intersecting, and none of these essential
operations becomes the bottleneck. HYB avoids merging
altogether since, by construction, the potential completions
from the given word rangeW always lie within a single block.
The read time of HYB is about 50% larger than that of

INV, because HYB always reads a whole block of size Θ(n),
even for small word ranges. This also partially explains why
HYB spends more time decompressing than INV; the other
factor is that decompression of the word ids is more ex-
pensive than decompression of the document ids. As we
remarked in Section 4.1, the absolute time for ranking is

370

the same for both methods. Ranking takes more time on
average for the 1-word queries, because these tend to have
larger result sets. The comparison with the time needed for
the maintenance of the history, which is nothing but memory
allocation and copying, shows that all of HYB’s operation
are essentially fast list scans.

Query size 1-word multi-word

Index type INV HYB INV HYB

average time 0.340 secs 0.244 secs 2.404 secs 0.207 secs

read .024 7% .048 20% .032 1% .045 22%

decompress .011 3% .032 13% .023 1% .045 22%

intersect —— —— 2.27 94% .030 14%

merging .165 48% —— .010 .4% ——

ranking .081 24% .083 34% .007 .3% .007 4%

history .058 17% .082 32% .062 3% .079 38%

Table 3: Breakdown of average processing times for
INV and HYB, for the difficult (unfiltered) queries
on Terabyte.

6. CONCLUSIONS
We have introduced an autocompletion feature for full-

text search, and presented a new compact indexing data
structure for supporting this feature with very fast response
times. We have built a full-fledged search engine around
this feature, and we have given arguments, why we believe
it to be practically useful. Given the interactivity of this
engine, the next logical step following this work would be to
conduct a user study for verifying that belief. We also see
potential for a further speed-up of query processing time by
applying techniques from top-k query processing [9], in order
to display the most relevant hits and completions without
first computing and ranking all of them.

7. ACKNOWLEDGEMENTS
Many thanks to our mentor David Grossman for his en-

couragement and many valuable comments.

8. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. New data
structures for orthogonal range searching. In 41st
Symposium on Foundations of Computer Science
(FOCS’00), pages 198–207, 2000.

[3] V. N. Anh and A. Moffat. Inverted index compression
using word-aligned binary codes. Information
Retrieval, 8:151–166, 2005.

[4] L. Arge, V. Samoladas, and J. S. Vitter. On
two-dimensional indexability and optimal range search
indexing. In 18th Symposium on Principles of
Database Systems (PODS’99), pages 346–357, 1999.

[5] R. Baeza-Yates. A fast set intersection algorithm for
sorted sequences. Lecture Notes in Computer Science,
3109:400–408, 2004.

[6] S. Bickel, P. Haider, and T. Scheffer. Learning to
complete sentences. In 16th European Conference on
Machine Learning (ECML’05), pages 497–504, 2005.

[7] C. L. A. Clarke, N. Craswell, and I. Soboroff. The
TREC terabyte retrieval track. SIGIR Forum,
39(1):25, 2005.

[8] J. J. Darragh, I. H. Witten, and M. L. James. The
reactive keyboard: A predictive typing aid. IEEE
Computer, pages 41–49, 1990.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[10] P. Ferragina, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Two-dimensional substring indexing.
Journal of Computer and System Science,
66(4):763–774, 2003.

[11] P. Ferragina and G. Manzini. Indexing compressed
text. Journal of the ACM, 52(4):552–581, 2005.

[12] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing search
in context: The concept revisited. In 10th
International World Wide Web Conference
(WWW10), pages 406–414, 2001.

[13] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[14] K. Grabski and T. Scheffer. Sentence completion. In
27th Conference on Research and Development in
Information Retrieval (SIGIR’04), pages 433–439,
2004.

[15] M. Jakobsson. Autocompletion in full text transaction
entry: a method for humanized input. In Conference
on Human Factors in Computing Systems (CHI’86),
pages 327–323, 1986.

[16] D. Metzler, T. Strohman, H. Turtle, and W. B. Croft.
Indri at TREC 2004: Terabyte track. In 13th Text
Retrieval Conference (TREC’04), 2004.

[17] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349–379, 1996.

[18] G. W. Paynter, I. H. Witten, S. J. Cunningham, and
G. Buchanan. Scalable browsing for large collections:
A case study. In 5th Conference on Digital Libraries
(DL’00), pages 215–223, 2000.

[19] S. E. Robertson, S. Walker, M. M. Beaulieu,
M. Gatford, and A. Payne. Okapi at TREC-4. In 4th
Text Retrieval Conference (TREC’95), pages 73–96,
1995.

[20] T. Stocky, A. Faaborg, and H. Lieberman. A
commonsense approach to predictive text entry. In
Conference on Human Factors in Computing Systems
(CHI’04), pages 1163–1166, 2004.

[21] E. M. Voorhees. Query expansion using
lexical-semantic relations. In 17th Conference on
Research and Development in Information Retrieval
(SIGIR’94), pages 171–180, 1994.

[22] H. Williams and J. Zobel. Compressing integers for
fast file access. Computer Journal, 42(3):193–201,
1999.

[23] I. H. Witten, T. C. Bell, and A. Moffat. Managing
Gigabytes: Compressing and Indexing Documents and
Images, 2nd edition. Morgan Kaufmann, 1999.

[24] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems, 23(4):453–490,
1998.

371

